Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 106803    DOI: 10.1088/1674-1056/ac1571
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Scalable fabrication of Bi2O2Se polycrystalline thin film for near-infrared optoelectronic devices applications

Bin Liu(刘斌) and Hong Zhou(周洪)
School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  We present a controlled, stepwise formation of layered semiconductor Bi2O2Se thin films prepared via the vapour process by annealing topological insulator Bi2Se3 thin films in low oxygen atmosphere for different reactions. Photodetectors based on Bi2O2Se thin film show a responsivity of 1.7×104 A/W at a wavelength of 980 nm. Field-effect transistors based on Bi2O2Se thin film exhibit n-type behavior and present a high electron mobility of 17 cm2/V·s. In addition, the electrical properties of the devices after 4 months keeping in the air shows little change, implying outstanding air-stability of our Bi2O2Se thin films. From the obtained results, it is evident that low oxygen annealing is a surprisingly effective method to fabricate Bi2O2Se thin films for integrated optoelectronic applications.
Keywords:  thin films      Bi2Se3      vapor-phase deposition      photodetector      Bi2O2Se  
Received:  25 April 2021      Revised:  27 June 2021      Accepted manuscript online:  18 July 2021
PACS:  68.55.-a (Thin film structure and morphology)  
  81.10.Bk (Growth from vapor)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the Hunan Provincial Natural Science Foundation of China (Grant No. 2019JJ40032).
Corresponding Authors:  Hong Zhou     E-mail:  zhouhong@hnu.edu.cn

Cite this article: 

Bin Liu(刘斌) and Hong Zhou(周洪) Scalable fabrication of Bi2O2Se polycrystalline thin film for near-infrared optoelectronic devices applications 2021 Chin. Phys. B 30 106803

[1] Li J, Wang J, Ma J, Shen H, Li L, Duan X and Li D 2019 Nat. Commun. 10 806
[2] Liu J, Zan W, Li K, Yang Y, Bu F and Xu Y 2017 J. Am. Chem. Soc. 139 11666
[3] Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M, Chen X Q, Cheng H M and Ren W 2020 Science 369 670
[4] Liu C, Chen H, Wang S, Liu Q, Jiang Y G, Zhang D W, Liu M and Zhou P 2020 Nat. Nanotechnol. 15 545
[5] Migliato Marega G, Zhao Y, Avsar A, Wang Z, Tripathi M, Radenovic A and Kis A 2020 Nature 587 72
[6] Wang Q H, Kalantar Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[7] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[8] Ding Y, Zhou N, Gan L, Yan X, Wu R, Abidi I H, Waleed A, Pan J, Ou X, Zhang Q, Zhuang M, Wang P, Pan X, Fan Z, Zhai T and Luo Z 2018 Nano Energy 49 200
[9] Tan L, Liu Q, Ding Y, Lin X, Hu W, Cai M Q and Zhou H 2020 Nano Res. 13 557
[10] Lanza M, Smets Q, Huyghebaert C and Li L J 2020 Nat. Commun. 11 5689
[11] Yu Z, Ong Z Y, Li S, Xu J B, Zhang G, Zhang Y W, Shi Y and Wang X 2017 Adv. Funct. Mater. 27 1604093
[12] Cheng L, Zhang C and Liu Y 2020 Phys. Rev. Lett. 125 177701
[13] Tong T, Li W, Qin S, Yuan X, Chen Y, Zhang C, Liu W, Wang P, Hu W, Wang F, Zhang J, Zhang R and Xu Y 2020 IEEE Electron Dev. Lett. 41 1464
[14] Wu J, Liu Y, Tan Z, Tan C, Yin J, Li T, Tu T and Peng H 2017 Adv. Mater. 29 1704060
[15] Li P, Han A, Zhang C, He X, Zhang J, Zheng D, Cheng L, Li L J, Miao G X and Zhang X X 2020 ACS Nano 14 11319
[16] Chen C, Wang M, Wu J, et al. 2018 Sci. Adv. 4 eaat8355
[17] Wu J, Yuan H, Meng M, Chen C, Sun Y, Chen Z, Dang W, Tan C, Liu Y, Yin J, Zhou Y, Huang S, Xu H Q, Cui Y, Hwang H Y, Liu Z, Chen Y, Yan B and Peng H 2017 Nat. Nanotechnol. 12 530
[18] Ghosh T, Samanta M, Vasdev A, Dolui K, Ghatak J, Das T, Sheet G and Biswas K 2019 Nano Lett. 19 5703
[19] Tan X, Lan J l, Ren G, Liu Y, Lin Y H and Nan C W 2017 J. Am. Ceram. Soc. 100 1494
[20] Yang F, Wang R, Zhao W, Jiang J, Wei X, Zheng T, Yang Y, Wang X, Lu J and Ni Z 2019 Appl. Phys. Lett. 115 193103
[21] Wu M and Zeng X C 2017 Nano Lett. 17 6309
[22] Chen W, Khan U, Feng S, Ding B, Xu X and Liu B 2020 Adv. Funct. Mater. 30 2004960
[23] Hong C, Tao Y, Nie A, Zhang M, Wang N, Li R, Huang J, Huang Y, Ren X, Cheng Y and Liu X 2020 ACS Nano 14 16803
[24] Tan C, Tang M, Wu J, Liu Y, Li T, Liang Y, Deng B, Tan Z, Tu T, Zhang Y, Liu C, Chen J H, Wang Y and Peng H 2019 Nano Lett. 19 2148
[25] Zhang H, Zhang X, Liu C, Lee S T and Jie J 2016 ACS Nano 10 5113
[26] Chowdhury T, Kim J, Sadler E C, Li C, Lee S W, Jo K, Xu W, Gracias D H, Drichko N V, Jariwala D, Brintlinger T H, Mueller T, Park H G and Kempa T J 2020 Nat. Nanotechnol. 15 29
[27] Tu T, Zhang Y, Li T, Yu J, Liu L, Wu J, Tan C, Tang J, Liang Y, Zhang C, Dai Y, Han Y, Lai K and Peng H 2020 Nano Lett. 20 7469
[28] Kong D, Cha J J, Lai K, Peng H, Analytis J G, Meister S, Chen Y, Zhang H J, Fisher I R, Shen Z X and Cui Y 2011 ACS Nano 5 4698
[29] Irfan B, Sahoo S, Gaur A P S, Ahmadi M, Guinel M J F, Katiyar R S and Chatterjee R 2014 J. Appl. Phys. 115 173506
[30] Zhang J, Peng Z, Soni A, Zhao Y, Xiong Y, Peng B, Wang J, Dresselhaus M S and Xiong Q 2011 Nano Lett. 11 2407
[31] Khan U, Luo Y, Tang L, Teng C, Liu J, Liu B and Cheng H M 2019 Adv. Funct. Mater. 29 1807979
[32] Fu Q, Zhu C, Zhao X, Wang X, Chaturvedi A, Zhu C, Wang X, Zeng Q, Zhou J, Liu F, Tay B K, Zhang H, Pennycook S J and Liu Z 2019 Adv. Mater. 31 1804945
[33] Su G, Hadjiev V G, Loya P E, Zhang J, Lei S, Maharjan S, Dong P M, Ajayan P, Lou J and Peng H 2015 Nano Lett. 15 506
[34] Wu J, Tan C, Tan Z, Liu Y, Yin J, Dang W, Wang M and Peng H 2017 Nano Lett. 17 3021
[35] Tong T, Chen Y, Qin S, Li W, Zhang J, Zhu C, Zhang C, Yuan X, Chen X, Nie Z, Wang X, Hu W, Wang F, Liu W, Wang P, Wang X, Zhang R and Xu Y 2019 Adv. Funct. Mater. 29 1905806
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[5] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[6] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[9] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[10] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[11] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[12] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[13] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[14] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[15] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
No Suggested Reading articles found!