Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 090506    DOI: 10.1088/1674-1056/ac1334
GENERAL Prev   Next  

Ferromagnetic Heisenberg spin chain in a resonator

Yusong Cao(曹雨松)1,2,†, Junpeng Cao(曹俊鹏)1,2,3,4, and Heng Fan(范桁)1,2,3,5
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China;
5 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  We investigate the properties of a generalized Rabi model by replacing the two-level atom in Rabi model with a ferromagnetic Heisenberg spin chain. We find that the dynamical behavior of the system can be divided into four categories. The energy spectrum of the ground state and some low excited states are obtained. When the magnons and the photon are in resonance, the model is exactly solvable and the rigorous solution is obtained. Near the resonance point where the detuning is small, the system is studied with the help of perturbation theory. This model has a spontaneously breaking of parity symmetry, suggesting the existence of a quantum phase transition. The critical exponent from the normal phase is computed.
Keywords:  magnon      resonator      quantum phase transition  
Received:  01 May 2021      Revised:  06 July 2021      Accepted manuscript online:  12 July 2021
PACS:  05.30.Jp (Boson systems)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.-p (Quantum optics)  
Corresponding Authors:  Yusong Cao     E-mail:

Cite this article: 

Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁) Ferromagnetic Heisenberg spin chain in a resonator 2021 Chin. Phys. B 30 090506

[1] Rabi I I 1937 Phys. Rev. 51 652
[2] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[3] Liebfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[4] Englund D, Faraon A, Fushman I, Stoltz N, Petroff P and Vuckovic J 2007 Nature 450 857
[5] Cordero S, Nahmad-Achar E, Lopez-Pena R and Castanos O arXiv:2002.02491 [quant-ph]
[6] Shen L, Yang J, Shi Z, Zhong Z and Xu C 2021 J. Phys. A: Math. Theor. 54 105302
[7] Khitrova G, Gibbs H M, Kira M, Koch S W and Scherer A 2006 Nat. Phys. 2 81
[8] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[9] Dicke R H 1954 Phys. Rev. 93 99
[10] Hepp K and Lieb E H 1973 Ann. Phys. 76 360
[11] Peng J, Rico E, Zhong J, Solano E and Egusquiza I L 2019 arXiv:1904.02118 [quant-ph]
[12] Ying Z, Cong L and Sun X 2020 J. Phys. A: Math. Theor. 53 345301
[13] Liu M, Chesi S, Ying Z, Chen X, Luo H and Lin H 2017 Phys. Rev. Lett. 119 220601
[14] Lambert N, Emary C and Brandes T 2005 Phys. Rev. A 71 053804
[15] Lambert N, Emary C and Brandes T 2004 Phys. Rev. Lett. 92 073602
[16] Emary C and Brandes T 2003 Phys. Rev. E 67 066203
[17] Flottat T, Hebert F, Rousseau V G and Batrouni G G 2016 Eur. Phys. J. D 70 213
[18] Schiro M, Bordyuh M, Oztop B and Tureci H E 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224021
[19] Wong M T C and Law C K 2011 Phys. Rev. A 83 055802
[20] Lei S and Lee R 2008 Phys. Rev. A 77 033827
[21] Wang Y, Su Y, Chen X and Wu C 2020 Phys. Rev. Appl. 14 044043
[22] O'Conner K M and Wooters W K 2001 Phys. Rev. A 63 052302
[23] Gunlycke D, Kendon V M and Vedral V 2001 Phys. Rev. A 64 042302
[24] Bose S, Fuentes-Guridi I, Knight P L and Vedral V 2001 Phys. Rev. Lett. 87 050401
[25] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[26] Andrianov S N and Moiseev S A 2014 Phys. Rev. A 90 042303
[27] Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M and Tobar M E 2014 Phys. Rev. Appl. 2 054002
[28] Wolski S P, Lachance-Quirion D, Tabuchi Y, Kono S, Noguchi A, Usami K and Nakamura Y 2020 Phys. Rev. Lett. 125 117701
[29] Liu Z, Xiong H and Wu Y 2019 Phys. Rev. B 100 134421
[30] Xie Q, Zhong H, Batchelor M T and Lee C 2017 J. Phys. A: Math. Theor. 50 113001
[31] Pedernales J S, Lizuain I, Felicetti S, Romero G, Lamata L and Solano E 2015 Sci. Rep. 5 15472
[1] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[2] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
[3] Magnon bands in twisted bilayer honeycomb quantum magnets
Xingchuan Zhu(朱兴川), Huaiming Guo(郭怀明), and Shiping Feng(冯世平). Chin. Phys. B, 2021, 30(7): 077505.
[4] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[5] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[6] Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers
Hang Xue(薛航), Zhirong Lin(林志荣), Wenbing Jiang(江文兵), Zhengqi Niu(牛铮琦), Kuang Liu(刘匡), Wei Peng(彭炜), and Zhen Wang(王镇). Chin. Phys. B, 2021, 30(6): 068503.
[7] Design of sextuple-mode triple-ring HTS UWB filter using two-round interpolation
Ming-En Tian(田明恩), Zhi-He Long(龙之河), You Lan(蓝友), Lei-Lei He(贺磊磊), and Tian-Liang Zhang(张天良). Chin. Phys. B, 2021, 30(5): 058503.
[8] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[9] Micro-scale photon source in a hybrid cQED system
Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2021, 30(4): 048507.
[10] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[11] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[12] Integrated silicon-based suspended racetrack micro-resonator for biological solution sensing with high-order mode
Tao Ma(马涛), Yong-Sheng Tian(田永生), Shao-Hui Liu(刘少晖), Jia-He Ma(马家赫), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(11): 114208.
[13] Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials
Yu-Jia Sun(孙宇伽), Si-Min Pang(庞思敏), and Jun Zhang(张俊). Chin. Phys. B, 2021, 30(11): 117104.
[14] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[15] Interaction region of magnon-mediated spin torques and novel magnetic states
Zai-Dong Li(李再东), Qi-Qi Guo(郭奇奇), Yong Guo(郭永), Peng-Bin He(贺鹏斌), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(10): 107506.
[1] Jia Yu, Ma Bing-xian, Shen San-guo, Yang Shi-e. CALCULATION OF ELECTRONIC STATES OF Si(337) SURFACE[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(1): 46 -51 .
[2] Ding Xiu-xiang, Liang Jiu-qing. LARMOR PRECESSION AND THE BARRIER INTERACTION TIME[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(6): 409 -415 .
[3] Xue Qi-zhen, S. Kuwano, K. Nakayama, T. Sakurai, Xue Qi-kun. GROWTH MODE AND SURFACE RECONSTRUCTION OF GaN(0001) THIN FILMS ON 6H-SiC(0001)[J]. Chin. Phys., 2001, 10(13): 157 -162 .
[5] Wu Xiang-Yao, Yin Xin-Guo, Guo Yi-Qing. Non-factorizable contributions in D0→π+π- decay[J]. Chin. Phys., 2004, 13(4): 469 -472 .
[6] Wu Hui-Bin. Potential method of integration for solving the equations of mechanical systems[J]. Chin. Phys., 2006, 15(5): 899 -902 .
[7] Luo Zheng-Ming, Deng Bai-Quan, Peng Li-Lin, Yan Jian-Cheng, Chen Zhi. Damaging impacts of energetic charge particles on materials in plasma energy explosive events[J]. Chin. Phys., 2006, 15(7): 1486 -1491 .
[8] Liu Xiao-Juan, Zhou Bing-Ju, Liu Ming-Wei, Li Shou-Cun. Preparation and control of entangled states in the two-mode coherent fields interacting with a moving atom via two-photon process[J]. Chin. Phys., 2007, 16(12): 3685 -3691 .
[9] Zhang Sheng-Hai, Qian Xing-Zhong, Liu Yu-Jin. Chaos synchronization in injection-locked semiconductor lasers with optical feedback[J]. Chin. Phys., 2007, 16(2): 463 -467 .
[10] Jiang Chang-Sheng, Liu Yang-Zheng, Lin Chang-Sheng, Jiang Yao-Mei. Chaos synchronization between two different 4D hyperchaotic Chen systems[J]. Chin. Phys., 2007, 16(3): 660 -665 .