Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096107    DOI: 10.1088/1674-1056/ac11e1
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents

Xin Liang(梁信)1, Hua Zhou(周华)2,†, Hui-Qiong Wang(王惠琼)1,3,‡, Lihua Zhang(张丽华)4, Kim Kisslinger4, and Junyong Kang(康俊勇)1
1 Key Laboratory of Semiconductors and Applications of Fujian Province, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China;
2 School of Physics, Shandong University, Jinan 250100, China;
3 Department of Physics, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia;
4 Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
Abstract  Zn1-xMgxO alloy films are important deep ultraviolet photoelectric materials. In this work, we used plasma-assisted molecular beam epitaxy to prepare Zn1-xMgxO films with different magnesium contents on polar (0001) and nonpolar (1010) ZnO substrates. The nanoscale structural features of the grown alloy films as well as the interfaces were investigated. It was observed that the cubic phases of the alloy films emerged when the Mg content reached 20% and 37% for the alloy films grown on the (0001) and (1010) ZnO substrates, respectively. High-resolution transmission electron microscopy images revealed cubic phases without visible hexagonal phases for the alloy films with more than 70% magnesium, and the cubic phases exhibited three-fold and two-fold rotations for the alloy films on the polar (0001) and nonpolar (1010) ZnO substrates, respectively. This work aims to provide references for monitoring the Zn1-xMgxO film structure with respect to different substrate orientations.
Keywords:  Zn1-xMgxO films      molecular beam epitaxy      phase separation      transmission electron microscopy  
Received:  06 April 2021      Revised:  21 June 2021      Accepted manuscript online:  07 July 2021
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  05.70.Fh (Phase transitions: general studies)  
  07.30.Kf (Vacuum chambers, auxiliary apparatus, and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804050).
Corresponding Authors:  Hua Zhou, Hui-Qiong Wang     E-mail:  zhouhua2018@sdu.edu.cn;hqwang@xmu.edu.cn

Cite this article: 

Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇) Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents 2021 Chin. Phys. B 30 096107

[1] Özgürü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J and Morkoç H 2005 J. Appl. Phys. 98 041301
[2] Wang K, Li L and Yao S D 2009 Chin. Phys. Lett. 26 108101
[3] Etacheri V, Roshan R and Kumar V 2012 ACS Applied Materials & Interfaces 4 2717
[4] Vashaei Z, Minegishi T, Suzuki H, Hanada T, Cho M W, Yao T and Setiawan A 2005 J. Appl. Phys. 98 054911
[5] Maity S and Sahu P P 2019 Thin Solid Films 674 107
[6] Wang L K, Ju Z G, Shan C X, Zheng J, Li B H, Zhang Z Z, Yao B, Zhao D X, Shen D Z and Zhang J Y 2010 Journal of Crystal Growth 312 875
[7] Han S, Shen D Z, Zhang J Y, Zhao Y M, Jiang D Y, Ju Z G, Zhao D X and Yao B 2010 Vacuum 84 1149
[8] Xu T N, W H Z, Qiu D J and Chen N B 2003 Chin. Phys. Lett. 20 1829
[9] Takeuchi I, Yang W, Chang K S, Aronova M A, Venkatesan T, Vispute R D and Bendersky L A 2003 J. Appl. Phys. 94 7336
[10] Wei M, Boutwell R C, Mares J W, Scheurer A and Schoenfeld W V 2011 Appl. Phys. Lett. 98 261913
[11] Yadav M K, Ghosh M, Biswas R, Raychaudhuri A K, Mookerjee A and Datta S 2007 Phys. Rev. B 76 195450
[12] Wu K P, Qi J, Peng B, Tang K, Ye J D, Zhu S M and Gu S L 2015 Acta Phys. Sin. 64 187304 (in Chinese)
[13] Liang J, Wu H Z, Lao Y F, Qiu D J, Chen N B and Xu T N 2004 Chin. Phys. Lett. 21 1135
[14] Boutwell R C, Wei M, Baudelet M and Schoenfeld W V 2014 J. Alloys Compd. 584 327
[15] Wu Y, Dong B, Zhang L, Song H B and Yan C J 2018 International Journal of Hydrogen Energy 43 12627
[16] Santander-Syro A F, Copie O, Kondo T, Fortuna F, Pailhes S, Weht R, Qiu X G, Bertran F, Nicolaou A, Taleb-Ibrahimi A, Le Fevre P, Herranz G, Bibes M, Reyren N, Apertet Y, Lecoeur P, Barthelemy A and Rozenberg M J 2011 Nature 469 189
[17] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J and Schlom D G 2004 Nature 430 758
[18] Zhang S G, Guo D L, Wang M J, Javed M S and Hu C G 2015 Applied Surface Science 335 115
[19] Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y and Kawasaki M 2008 Nat. Mater. 7 855
[20] Park M H, Lee H J, Kim G H, Kim Y J, Kim J H, Lee J H and Hwang C S 2011 Adv. Funct. Mater. 21 4305
[21] Zhu Y M, Chang W S, Yu R, Liu R R, Wei T C, He J H, Chu Y H and Zhan Q 2015 Appl. Phys. Lett. 107 191902
[22] Liang D D, Li X P, Wang J S, Wu L C and Chen P 2018 Solid-State Electronics 145 46
[23] Fritsch D, Schmidt H and Grundmann M 2006 Appl. Phys. Lett. 88 134104
[24] Pintilie I, Pasuk I, Ibanescu G A, Negrea R, Chirila C, Vasile E and Pintilie L 2012 J. Appl. Phys. 112 104103
[25] Zheng P P, Sun B, Chen Y Z, Elshekh H, Yu T, Mao S S, Zhu S H, Wang H Y, Zhao Y and Yu Z 2019 Applied Materials Today 14 21
[26] Zheng H, Zhu H, Tang Z, Wang Y, Wei H and Shan C 2020 Chin. Phys. B 29 097302
[27] Hu Z F, W H H, Lv Y W and Zhang X Q 2015 Chin. Phys. B 24 107302
[28] Zhou H, Wang J, Mai M F, Ma X Z, Hu S J, Xu M C, Bai L H and Yan S S 2020 Thin Solid Films 709 138074
[29] Maria J P, Trolier-McKinstry S, Schlom D G, Hawley M E and Brown G W 1998 J. Appl. Phys. 83 4373
[1] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[2] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[3] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[4] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[5] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[6] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
[7] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[8] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
[9] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[10] Effects of Nb and Mo additions on thermal behavior, microstructure and magnetic property of FeCoZrBGe alloy
Yaming Sun(孙亚明), Zhiqun Wang(王志群), Shi-Chong Xu(徐仕翀), and Zhong Hua(华中). Chin. Phys. B, 2021, 30(3): 038103.
[11] Comparison of helium bubble formation in F82H, ODS, SIMP and T91 steels irradiated by Fe and He ions simultaneously
Bingsheng Li(李炳生), Zhen Yang(杨振), Shuai Xu(徐帅), Kongfang Wei (魏孔芳), Zhiguang Wang(王志光), Tielong Shen(申铁龙), Tongmin Zhang(张桐民), and Qing Liao(廖庆). Chin. Phys. B, 2021, 30(3): 036102.
[12] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[13] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
[14] Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy
Xiang-Peng Zhou(周祥鹏), Hai-Bing Qiu(邱海兵), Wen-Xian Yang(杨文献), Shu-Long Lu(陆书龙), Xue Zhang(张雪), Shan Jin(金山), Xue-Fei Li(李雪飞), Li-Feng Bian(边历峰), and Hua Qin(秦华). Chin. Phys. B, 2021, 30(12): 127301.
[15] Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate
S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰). Chin. Phys. B, 2021, 30(12): 126804.
[1] Jiang Zhi-jie, Mo Dang. ELECTRON PARAMAGNETIC RESONANCE STUDIES OF DIMENSIONALITY OF POLYANILINE FILMS[J]. Chin. Phys., 2000, 9(4): 290 -293 .
[2] Zhan Yong, Zhao Tong-Jun, Yu Hui, Song Yan-Li. Transport properties under the influence of finite friction[J]. Chin. Phys., 2002, 11(6): 624 -628 .
[3] Li Shao-Hui, Li Ru-Xin, Ni Guo-Quan, Xu Zhi-Zhan. Electron impact ionization of large krypton clusters[J]. Chin. Phys., 2004, 13(10): 1684 -1688 .
[4] Rong Chuan-Bing, Zhang Jian, Du Xiao-Bo, Zhang Hong-Wei, Zhang Shao-Ying, Shen Bao-Gen. Magnetic properties and coercivity mechanism of precipitation-hardened Gd-Co based ribbons[J]. Chin. Phys., 2004, 13(7): 1144 -1148 .
[5] Ning Xin-Bao, Wu Wei, Ma Xiao-Fei, Li Jin. Detecting dynamical complexity changes in time series using the base-scale entropy[J]. Chin. Phys., 2005, 14(12): 2428 -2432 .
[6] Wang Zhu-Yuan, Cui Yi-Ping. Behaviour of a wideband double-pass discrete Raman amplifier with simultaneous reflection of signals and multi-pump[J]. Chin. Phys., 2005, 14(2): 372 -377 .
[7] Ke Jian-Hong, Zhuang You-Yi, Lin Zhen-Quan. Aggregate growth driven by monomer transfer[J]. Chin. Phys., 2005, 14(8): 1676 -1682 .
[8] Cai Xin-Hua, Guo Jie-Rong, Nie Jian-Jun, Jia Jin-Ping. Entanglement diversion and quantum teleportation of entangled coherent states[J]. Chin. Phys., 2006, 15(3): 488 -491 .
[9] Li Mi-Shan, Tian Qiang. Discrete gap breathers in a diatomic K2--K3--K4 chain with cubic nonlinearity[J]. Chin. Phys., 2007, 16(1): 228 -235 .
[10] Wang Xiang-Hui, Lin Lie, Zhang Yang. Analysis of second-harmonic generation microscopy under refractive index mismatch[J]. Chin. Phys., 2007, 16(11): 3285 -3289 .