Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 113303    DOI: 10.1088/1674-1056/ac11df
Special Issue: SPECIAL TOPIC — Optical field manipulation
TOPICAL REVIEW—Optical field manipulation Prev   Next  

Superchiral fields generated by nanostructures and their applications for chiral sensing

Huizhen Zhang(张慧珍), Weixuan Zhang(张蔚暄), Saisai Hou(侯赛赛), Rongyao Wang(王荣瑶), and Xiangdong Zhang(张向东)
Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  Chirality is ubiquitous in natural world. Although with similar physical and chemical properties, chiral enantiomers could play different roles in biochemical processes. Discrimination of chiral enantiomers is extremely important in biochemical, analytical chemistry, and pharmaceutical industries. Conventional chiroptical spectroscopic methods are disadvantageous at a limited detection sensitivity because of the weak signals of natural chiral molecules. Recently, superchiral fields were proposed to effectively enhance the interaction between light and molecules, allowing for ultrasensitive chiral detection. Intensive theoretical and experimental works have been devoted to generation of superchiral fields based on artificial nanostructures and their application in ultrasensitive chiral sensing. In this review, we present a survey on these works. We begin with the introduction of chiral properties of electromagnetic fields. Then, the optical chirality enhancement and ultrasensitive chiral detection based on chiral and achiral nanostructures are discussed respectively. Finally, we give a short summary and a perspective for the future ultrasensitive chiral sensing.
Keywords:  superchiral fields      chiral detection      chiral nanostructures      achiral nanostructures  
Received:  18 April 2021      Revised:  29 June 2021      Accepted manuscript online:  07 July 2021
PACS:  33.55.+b (Optical activity and dichroism)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91850205 and 11904021).
Corresponding Authors:  Xiangdong Zhang     E-mail:  zhangxd@bit.edu.cn

Cite this article: 

Huizhen Zhang(张慧珍), Weixuan Zhang(张蔚暄), Saisai Hou(侯赛赛), Rongyao Wang(王荣瑶), and Xiangdong Zhang(张向东) Superchiral fields generated by nanostructures and their applications for chiral sensing 2021 Chin. Phys. B 30 113303

[1] Thomson B K and Thomson W 2010 Baltimore lectures on molecular dynamics and the wave theory of light (Cambridge: Cambridge University Press)
[2] Valev V K, Baumberg J J, Sibilia C and Verbiest T 2013 Adv. Mater. 25 2517
[3] King C and Kendrick F 1962 The Lancet 280 1116
[4] Wang X O, Li C F and Li J Q 2006 Chin. Phys. B 15 2623
[5] Schellman J A 1975 Chem. Rev. 75 323
[6] Nafie L A 2011 Vibrational optical activity: principles and applications (John Wiley & Sons)
[7] Barron L D 2009 Molecular light scattering and optical activity (Cambridge: Cambridge University Press)
[8] Barron L D 2015 Biomedical Spectroscopy and Imaging 4 223
[9] Mutter S T, Zielinski F, Popelier P L and Blanch E W 2015 Analyst 140 2944
[10] Shen H X, Wu G Z and Wang P J 2013 Acta Phys. Sin. 62 153301 (in Chinese)
[11] Shen H X, Wu G Z and Wang P J 2013 Acta Phys. Sin. 62 053301 (in Chinese)
[12] Shen H X, Wu G Z and Wang P J 2012 Chin. Phys. B 21 123301
[13] Tang Y and Cohen A E 2010 Phys. Rev. Lett. 104 163901
[14] Tang Y and Cohen A E 2011 Science 332 333
[15] Lipkin D 1964 J. Math. Phys. 5 696
[16] Smart A G 2011 Phys. Today 64 16
[17] Salam A J 2010 Molecular quantum electrodynamics (John Wiley & Sons)
[18] Craig D and Thirunamachandran T 1999 Theor. Chem. Acc. 102 112
[19] Harris R 1965 J. Chem. Phys. 43 959
[20] Ogier R, Fang Y, Svedendahl M, Johansson P and Käll M 2014 ACS Photon. 1 1074
[21] Nair G, Singh H J, Paria D, Venkatapathi M and Ghosh A 2014 J. Phys. Chem. C 118 4991
[22] Schäferling M, Dregely D, Hentschel M and Giessen H 2012 Phys. Rev. X 2 031010
[23] Takahashi S, Potts A, Bagnall D, Zheludev N I and Zayats A V 2005 Opt. Commun. 255 91
[24] Schnell M, Sarriugarte P, Neuman T, Khanikaev A, Shvets G, Aizpurua J and Hillenbrand R 2016 Nano Lett. 16 663
[25] Karimullah A S, Jack C, Tullius R, Rotello V M, Cooke G, Gadegaard N, Barron L D and Kadodwala M 2015 Adv. Mater. 27 5610
[26] Kuwata-Gonokami M, Saito N, Ino Y, Kauranen M, Jefimovs K, Vallius T, Turunen J and Svirko Y 2005 Phys. Rev. Lett. 95 227401
[27] Konishi K, Sugimoto T, Bai B, Svirko Y and Kuwata-Gonokami M 2007 Opt. Express 15 9575
[28] Bai B, Svirko Y, Turunen J and Vallius T 2007 Phys. Rev. A 76 023811
[29] Schwanecke A, Krasavin A, Bagnall D, Potts A, Zayats A and Zheludev N 2003 Phys. Rev. Lett. 91 247404
[30] Papakostas A, Potts A, Bagnall D, Prosvirnin S, Coles H and Zheludev N 2003 Phys. Rev. Lett. 90 107404
[31] Meinzer N, Hendry E and Barnes W L 2013 Phys. Rev. B 88 041407
[32] Jain P K, Eustis S and El-Sayed M A 2006 J. Phys. Chem. B 110 18243
[33] Zentgraf T, Meyrath T, Seidel A, Kaiser S and Giessen H 2007 Phys. Rev. B 76 033407
[34] Hendry E, Mikhaylovskiy R V, Barron L D, Kadodwala M and Davis T J 2012 Nano Lett. 12 3640
[35] Esposito M, Tasco V, Cuscuna M, Todisco F, Benedetti A, Tarantini I, Giorgi M D, Sanvitto D and Passaseo A 2015 ACS Photon. 2 105
[36] Gibbs J, Mark A, Eslami S and Fischer P 2013 Appl. Phys. Lett. 103 213101
[37] Gibbs J G, Mark A G, Lee T C, Eslami S, Schamel D and Fischer P 2014 Nanoscale 6 9457
[38] Höflich K, Yang R B, Berger A, Leuchs G and Christiansen S 2011 Adv. Mater. 23 2657
[39] Esposito M, Tasco V, Cuscuna M, Todisco F, Benedetti A, Tarantini I, Giorgi M D, Sanvitto D and Passaseo A 2015 ACS Photon. 2 105
[40] Esposito M, Tasco V, Todisco F, Benedetti A, Sanvitto D and Passaseo A 2014 Adv. Opt. Mater. 2 154
[41] Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E M, Högele A, Simmel F C, Govorov A O and Liedl T 2012 Nature 483 311
[42] Shen X, Song C, Wang J, Shi D, Wang Z, Liu N and Ding B 2012 J. Am. Chem. Soc. 134 146
[43] Schaäferling M, Yin X, Engheta N and Giessen H 2014 ACS Photon. 1 530
[44] Tseng M L, Lin Z H, Kuo H Y, Huang T T, Huang Y T, Chung T L, Chu C H, Huang J S and Tsai D P 2019 Adv. Opt. Mater. 7 1900617
[45] Schaferling M, Engheta N, Giessen H and Weiss T 2016 ACS Photon. 3 1076
[46] Xiong X, Sun W H, Bao Y J, Wang M, Peng R W, Sun C, Lu X, Shao J, Li Z F and Ming N B 2010 Phys. Rev. B 81 075119
[47] Esposito M, Tasco V, Todisco F, Cuscuná M, Benedetti A, Sanvitto D and Passaseo A 2015 Nat. Commun. 6 1
[48] Ni J, Liu S, Wu D, Lao Z, Wang Z, Huang K, Ji S, Li J, Huang Z, Xiong Q, Hu Y, Chu J and Qiu C W 2021 Proc. Natl. Acad. Sci. USA 118 e2020055118
[49] Kaschke J, Blume L, Wu L, Thiel M, Bade K, Yang Z and Wegener M 2015 Adv. Opt. Mater. 3 1411
[50] Li J, Wang M, Wu Z, Li H, Hu G, Jiang T, Guo J, Liu Y, Yao K, Chen Z, Fang J, Fan D, Korgel B A, Alu A and Zheng Y 2021 Nano Lett. 21 973
[51] Tullius R, Karimullah A S, Rodier M, Fitzpatrick B, Gadegaard N, Barron L D, Rotello V M, Cooke G, Lapthorn A and Kadodwala M 2015 J. Am. Chem. Soc. 137 8380
[52] Zhao Y, Askarpour A N, Sun L, Shi J, Li X and Alú A 2017 Nat. Commun. 8 1
[53] Tullius R, Platt G W, Khosravi Khorashad L, Gadegaard N, Lapthorn A J, Rotello V M, Cooke G, Barron L D, Govorov A O and Karimullah A S 2017 ACS Nano 11 12049
[54] Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R, Lapthorn A, Kelly S, Barron L, Gadegaard N and Kadodwala M 2010 Nat. Nanotechnol. 5 783
[55] Kakkar T, Keijzer C, Rodier M, Bukharova T, Taliansky M, Love A J, Milner J J, Karimullah A S, Barron L D, Gadegaard N, Lapthorn A J and Kadodwala M S 2020 Light Sci. Appl. 9 1
[56] Rodier M, Keijzer C, Milner J, Karimullah A S, Barron L D, Gadegaard N, Lapthorn A J and Kadodwala M 2019 J. Phys. Chem. Lett. 10 6105
[57] Wu T, Ren J, Wang R and Zhang X 2014 J. Phys. Chem. C 118 20529
[58] García-Etxarri A and Dionne J A 2013 Phys. Rev. B 87 235409
[59] Zhao X and Reinhard B M 2019 ACS Photon. 6 1981
[60] Alizadeh M and Reinhard B M 2015 ACS Photon. 2 361
[61] Yoo S, Cho M and Park Q-H 2014 Phys. Rev. B 89 161405
[62] Wu T, Zhang W, Zhang H, Hou S, Chen G, Liu R, Lu C, Li J, Wang R and Duan P 2020 Phys. Rev. Lett. 124 083901
[63] García-Etxarri A, Gómez-Medina R, Froufe-Pérez L S, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M and Sáenz J J 2011 Opt. Express 19 4815
[64] Cao H and Wiersig J 2015 Rev. Mod. Phys. 87 61
[65] Tian X, Fang Y and Sun M 2015 Sci. Rep. 5 17534
[66] Biagioni P, Savoini M, Huang J S, Duó L, Finazzi M and Hecht B 2009 Phys. Rev. B 80 153409
[67] Yao K and Liu Y 2018 Nanoscale 10 8779
[68] Reinhard B M, Siu M, Agarwal H, Alivisatos A P and Liphardt J 2005 Nano Lett. 5 2246
[69] Bakker R M, Permyakov D, Yu Y F, Markovich D, Paniagua-Domínguez R, Gonzaga L, Samusev A, Kivshar Y, Luk'yanchuk B and Kuznetsov A I 2015 Nano Lett. 15 2137
[70] Davis T and Hendry E 2013 Phys. Rev. B 87 085405
[71] Horrer A, Zhang Y, Gérard D, Béal J, Kociak M, Plain J and Bachelot R 2019 Nano Lett. 20 509
[72] Yan B, Boriskina S V and Reinhard B M 2011 J. Phys. Chem. C 115 24437
[73] Gao S, Liu J and Zhang W 2016 J. Phys. Chem. C 120 10500
[74] Schäferling M, Yin X and Giessen H 2012 Opt. Express 20 26326
[75] Abdulrahman N A, Fan Z, Tonooka T, Kelly S M, Gadegaard N, Hendry E, Govorov A O and Kadodwala M 2012 Nano Lett. 12 977
[76] Guo J, Song G, Huang Y, Liang K, Wu F, Jiao R and Yu L 2021 ACS Photon. 8 901
[77] Qin J, Deng L, Kang T, Nie L, Feng H, Wang H, Yang R, Liang X, Tang T, Shen J, Li C, Wang H, Luo Y, Armelles G and Bi L 2020 ACS Nano 14 2808
[78] Du K, Li P, Wang H, Gao K, Liu R B, Lu F, Zhang W and Mei T 2021 Adv. Opt. Mater. 9 2001771
[79] Gorkunov M V, Antonov A A and Kivshar Y S 2020 Phys. Rev. Lett. 125 093903
[80] Hu J, Lawrence M and Dionne J A 2019 ACS Photon. 7 36
[81] Raziman T V, Godiksen R H, Muüller M A and Curto A G 2019 ACS Photon. 6 2583
[82] Slocik J M, Govorov A O and Naik R R 2011 Nano Lett. 11 701
[83] Wang R Y, Wang P, Liu Y, Zhao W, Zhai D, Hong X, Ji Y, Wu X, Wang F and Zhang D 2014 J. Phys. Chem. C 118 9690
[84] Liu Y, Wang R and Zhang X 2014 Opt. Express 22 4357
[85] Liu Y, Zhao W, Ji Y, Wang R Y, Wu X and Zhang X 2015 Europhys. Lett. 110 17008
[86] Wu T, Zhang W, Wang R and Zhang X 2017 Nanoscale 9 5110
[87] Zhang W, Wu T, Wang R and Zhang X 2017 J. Phys. Chem. C 121 666
[88] Chuntonov L and Haran G 2013 Nano Lett. 13 1285
[89] Lieberman I, Shemer G, Fried T, Kosower E M and Markovich G 2008 Angew. Chem. Int. Ed. 47 4855
[90] Govorov A O, Fan Z, Hernandez P, Slocik J M and Naik R R 2010 Nano Lett. 10 1374
[91] Lee S, Yoo S and Park Q H 2017 ACS Photon. 4 2047
[92] Zhang H and Govorov A 2013 Phys. Rev. B 87 075410
[93] Lu F, Tian Y, Liu M, Su D, Zhang H, Govorov A O and Gang O 2013 Nano Lett. 13 3145
[94] McPeak K M, van Engers C D, Bianchi S, Rossinelli A, Poulikakos L V, Bernard L, Herrmann S, Kim D K, Burger S and Blome M 2015 Adv. Mater. 27 6244
[95] ezanka P, Záruba K and Král V 2011 Colloids Surf. Physicochem. Eng. Aspects 374 77
[96] di Gregorio M C, Ben Moshe A, Tirosh E, Galantini L and Markovich G 2015 J. Phys. Chem. C 119 17111
[97] Kobayashi M, Tomita S, Sawada K, Shiba K, Yanagi H, Yamashita I and Uraoka Y 2012 Opt. Express 20 24856
[98] Maoz B M, Chaikin Y, Tesler A B, Bar Elli O, Fan Z, Govorov A O and Markovich G 2013 Nano Lett. 13 1203
[99] Besteiro L V, Zhang H, Plain J, Markovich G, Wang Z and Govorov A O 2017 Adv. Opt. Mater. 5 1700069
[100] Nesterov M L, Yin X, Schaäferling M, Giessen H and Weiss T 2016 ACS Photon. 3 578
[101] Govorov A O 2011 J. Phys. Chem. C 115 7914
[102] Gerard V A, Gun'ko Y K, Defrancq E and Govorov A O 2011 Chem. Commun. 47 7383
[103] Zhu F, Li X, Li Y, Yan M and Liu S 2015 Anal. Chem. 87 357
[104] Xu L G, Xu Z, Ma W, Liu L Q, Wang L B, Kuang H and Xu C L 2013 J. Mater. Chem. B 1 4478
[105] Zhu Z, Liu W, Li Z, Han B, Zhou Y, Gao Y and Tang Z 2012 ACS Nano 6 2326
[106] Layani M E, Ben Moshe A, Varenik M, Regev O, Zhang H, Govorov A O and Markovich G 2013 J. Phys. Chem. C 117 22240
[107] Levi-Belenkova T, Govorov A O and Markovich G 2016 J. Phys. Chem. C 120 12751
[108] Abdali S and Blanch E W 2008 Chem. Soc. Rev. 37 980
[109] Baffou G and Quidant R 2013 Laser Photon. Rev. 7 171
[110] Ioffe Z, Shamai T, Ophir A, Noy G, Yutsis I, Kfir K, Cheshnovsky O and Selzer Y 2008 Nat. Nanotech. 3 727
[111] Ward D R, Corley D A, Tour J M and Natelson D 2011 Nat. Nanotech. 6 33
[112] Ho C-S, Garcia-Etxarri A, Zhao Y and Dionne J 2017 ACS Photon. 4 197
[113] Vestler D, Ben-Moshe A and Markovich G 2019 J. Phys. Chem. C 123 5017
[114] Zhang W, Wu T, Wang R and Zhang X 2017 Nanoscale 9 5701
[115] Wu T, Zhang X, Wang R and Zhang X 2016 J. Phys. Chem. C 120 14795
[116] Sheena T S, Devaraj V, Lee J M, Balaji P, Gnanasekar P, Oh J W, Akbarsha M A and Jeganathan K 2020 Appl. Surf. Sci. 515 145955
[117] Cho Y, Huh J H, Park K J, Kim K, Lee J and Lee S 2017 Opt. Express 25 13822
[118] Vázquez-Guardado A and Chanda D 2018 Phys. Rev. Lett. 120 137601
[119] Yoo S and Park Q H 2015 Phys. Rev. Lett. 114 203003
[120] Mohammadi E, Tsakmakidis K L, Askarpour A N, Dehkhoda P, Tavakoli A and Altug H 2018 ACS Photon. 5 2669
[121] Garcia-Guirado J, Svedendahl M, Puigdollers J and Quidant R 2019 Nano Lett. 20 585
[122] Yoo S, Cho M and Park Q-H 2014 Phys. Rev. B 89 161405
[123] García-Meca C, Hurtado J, Martí J, Martínez A, Dickson W and Zayats A V 2011 Phys. Rev. Lett. 106 067402
[124] García-Meca C, Ortuno R, Rodriguez-Fortuno F J, Marti J and Martínez A 2009 Opt. Lett. 34 1603
[125] Mohammadi E, Tavakoli A, Dehkhoda P, Jahani Y, Tsakmakidis K L, Tittl A and Altug H 2019 ACS Photon. 6 1939
[1] Controllable transmission of vector beams in dichroic medium
Yun-Ke Li(李云珂), Jin-Wen Wang(王金文), Xin Yang(杨欣), Yun Chen(陈云), Xi-Yuan Chen(陈熙远), Ming-Tao Cao(曹明涛), Dong Wei(卫栋), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2019, 28(1): 014205.
[2] Chiral asymmetry of anti-symmetric coordinates studied by the Raman differential bond polarizability of S-phenylethylamine
Shen Hong-Xia (沈红霞), Wu Guo-Zhen (吴国祯), Wang Pei-Jie (王培杰). Chin. Phys. B, 2012, 21(12): 123301.
[3] Surface second harmonic generation of chiral molecules using three-coupled-oscillator model
Wang Xiao-Ou(王晓鸥), Li Chun-Fei(李淳飞), and Li Jun-Qing(李俊庆). Chin. Phys. B, 2006, 15(11): 2623-2630.
[4] RELATIONSHIP BETWEEN INTENSITY OF SURFACE SECOND HARMONIC GENERATION AND MOLECULAR STRUCTURE IN HELIX MOLECULAR FILMS
Xin Li (辛丽), Li Chun-fei (李淳飞), Li Jun-qing (李俊庆), Zheng Yang-dong (郑仰东). Chin. Phys. B, 2000, 9(12): 910-912.
No Suggested Reading articles found!