Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 094206    DOI: 10.1088/1674-1056/ac11d3

All-fiber laser seeded femtosecond Yb:KGW solid state regenerative amplifier

Renchong Lv(吕仁冲)1,2, Hao Teng(滕浩)2,3,4,†, Jiajun Song(宋贾俊)2,3, Renzhu Kang(康仁铸)1,2, Jiangfeng Zhu(朱江峰)1,‡, and Zhiyi Wei(魏志义)2,3,4,§
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  A high efficiency compact Yb:KGW regenerative amplifier using an all-fiber laser seed source was comprehensively studied. With thermal lensing effect compensated by the cavity design, the compressed pulses with energy of 1 mJ at 1 kHz and 0.4 mJ at 10 kHz in sub-400-fs pulse duration using chirped fiber Bragg grating (CFBG) stretcher were demonstrated. A modified Frantz-Nodvik equation was developed to emulate the dynamic behavior of the regenerative amplifier. The simulation results were in good agreement with the experiment. Numerical simulations and experimental results show that the scheme can be scalable to higher energy of multi-mJ, sub-300 fs pulses.
Keywords:  regenerative amplifier      ultrafast laser      hybrid laser amplifier  
Received:  27 May 2021      Revised:  25 June 2021      Accepted manuscript online:  07 July 2021
PACS:  42.55.Xi (Diode-pumped lasers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Project supported by Major Program of the National Natural Science Foundation of China (Grant No. 12034020), the National Natural Science Foundation of China (Grant No. 61805274), the National Key R&D Program of China (Grant No. 2018YFB1107201), and the Synergic Extreme Condition User Facility.
Corresponding Authors:  Hao Teng, Jiangfeng Zhu, Zhiyi Wei     E-mail:;;

Cite this article: 

Renchong Lv(吕仁冲), Hao Teng(滕浩), Jiajun Song(宋贾俊), Renzhu Kang(康仁铸), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义) All-fiber laser seeded femtosecond Yb:KGW solid state regenerative amplifier 2021 Chin. Phys. B 30 094206

[1] Bonamis G, Mishchick K, Audouard, E, Hönninger C, Mottay E, Lopez J and Manek-Hönninger I 2019 Journal of Laser Applications 31 022205
[2] Tokita S, Sakabe, S, Nagashima T, Hashida M and Inoue S 2015 Sci. Rep. 5 8268
[3] Lorek E, Larsen E W, Heyl C M, Carlström S, Paleček D, Zigmantas D and Mauritsson J 2014 Rev. Sci. Instru. 85 123106
[4] Saraceno C J, Sutter D, Metzger T and Ahmed M A 2019 Journal of the European Optical Society-Rapid Publications 15 15
[5] Zhao Z G and Kobayashi Y 2015 Appl. Phys. Express 9 012701
[6] Lv Z G, Yang Z, Li Q L, Li F, Wang Y S, Zhao W and Yang X J 2020 High Power Laser Science and Engineering 8 40
[7] Müller M, Kienel M, Klenke A, Gottschall T, Shestaev E, Plötner M, LIMPERT J and Tünnermann A 2016 Opt. Lett. 41 3439
[8] Kienel M, Müller M, Klenke A, Limpert J and Tünnermann A 2016 Opt. Lett. 41 3343
[9] Stark H, Buldt J, Müller M, Klenke A, Tünnermann A and Limpert J 2019 Opt. Lett. 44 5529
[10] Hornung M, Liebetrau H, Keppler S, Kessler A, Hellwing M, Schorcht F, Becker G, Reuter M, Polz J, Körner J, Hein J and Kaluza M 2016 Opt. Lett. 41 5413
[11] Veselis L, Bartulevicius T, Madeikis K, Michailovas A and Rusteika N 2018 Opt. Express 26 31873
[12] Verne L, Petelin J and Petkovšek R 2020 Opt. Express 28 7875
[13] Fischer J, Heinrich A C, Maier S, Jungwirth J, Brida D and Leitenstorfer A 2016 Opt. Lett. 41 246
[14] Calendron A L, Čankaya H and Kärtner F X 2014 Opt. Express 22 24752
[15] Papadopoulos D N, Pellegrina A, Ramirez L P, Georges P and Druon F 2011 Opt. Lett. 36 3816
[16] Buettner A, Buenting U, Wandt D, Neumann J and Kracht D 2010 Opt. Express 18 21973
[17] Kim G H, Yang J H, Lee D S, Kulik A V, Chizhov S A, Kang U and Yashin V E 2013 Journal of Optical Technology 80 142
[18] He H J, Yu J, Zhu W T, Guo X Y, Zhou C T and Ruan S C 2020 High Power Laser Science and Engineering 8 35
[19] Yan D Y, Liu B W, Chu Y X, Song H Y, Chai L, Hu M L and Wang C Y 2019 Chin. Opt. Lett. 17 041404
[20] Chénais S, Druon F, Forget S, Balembois F and Georges P 2006 Progress in Quantum Electronics 30 89
[21] Hoos F, Li S, Meyrath T P, Braun B and Giessen H 2008 Opt. Express 16 6041
[22] Magni V 1987 JOSA A 4 1962
[23] Grishin M, Gulbinas V and Michailovas A 2007 Opt. Express 15 9434
[24] Kroetz P, Ruehl A, Murari K, Čankaya H, Kärtner F X, Hartl I and Miller R D 2016 Opt. Express 24 9905
[25] von Grafenstein L, Bock M and Griebner U 2018 IEEE Journal of Selected Topics in Quantum Electronics 24 1
[26] Ogawa K, Akahane Y, Aoyama M, Tsuji K, Tokita S, Kawanaka J, Nishioka H and Yamakawa K 2007 Opt. Express 15 8598
[27] Golinelli A, Chen X, Gontier E, Bussiére B, Tcherbakoff O, Natile M, D'Oliverira P, Paul P M and Hergott J F 2017 Opt. Lett. 42 2326
[28] Lavenu L, Natile M, Guichard F, Zaouter Y, Hanna M, Mottay E and Georges P 2017 Opt. Express 25 7530
[1] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[2] Broadband mid-infrared pulse via intra-pulse difference frequency generation based on supercontinuum from multiple thin plates
Hang-Dong Huang(黄杭东), Chen-Yang Hu(胡晨阳), Hui-Jun He(何会军), Hao Teng(滕浩), Zhi-Yuan Li(李志远), Kun Zhao(赵昆), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(11): 114203.
[3] Two-dimensional materials for ultrafast lasers
Fengqiu Wang(王枫秋). Chin. Phys. B, 2017, 26(3): 034202.
[4] Laser diode end-pumped Nd:YVO4 regenerative amplifier for picosecond pulses
Zhang Zi-Long, Liu Qiang, Yan Ping, Xia Paketi, Gong Ma-Li. Chin. Phys. B, 2013, 22(5): 054206.
[5] Efficient collinear frequency tripling of femtosecond laser with compensation of group velocity delay
Wang Yan-Ling, Zhou Xu-Gui, Wu Hong, Ding Liang-En. Chin. Phys. B, 2009, 18(10): 4308-4313.
[2] Shi Dong-xia, Zhang Xiu-fang, Yuan Lei, Gu You-song, Chang Xiang-rong, Tian Zhong-zhuo, Zhang Yong-ping. CRYSTALLINE CARBON NITRIDE THIN FILMS DEPOSITED BY MICROWAVE PLASMA CHEMICAL VAPOR DEPOSITION[J]. Chin. Phys., 2000, 9(7): 545 -549 .
[3] Zhan Yong, Zhao Tong-Jun, Yu Hui, Song Yan-Li. Transport properties under the influence of finite friction[J]. Chin. Phys., 2002, 11(6): 624 -628 .
[4] Li Shao-Hui, Li Ru-Xin, Ni Guo-Quan, Xu Zhi-Zhan. Electron impact ionization of large krypton clusters[J]. Chin. Phys., 2004, 13(10): 1684 -1688 .
[5] Feng Chun-Hua, Wang Wen-Hao, He Ye-Xi, Gao Zhe, Zeng Li, Zhang Guo-Ping, Xie Li-Feng. Observation of intermittency in edge plasma of SUNIST tokamak[J]. Chin. Phys., 2004, 13(12): 2091 -2096 .
[6] Rong Chuan-Bing, Zhang Jian, Du Xiao-Bo, Zhang Hong-Wei, Zhang Shao-Ying, Shen Bao-Gen. Magnetic properties and coercivity mechanism of precipitation-hardened Gd-Co based ribbons[J]. Chin. Phys., 2004, 13(7): 1144 -1148 .
[7] Ning Xin-Bao, Wu Wei, Ma Xiao-Fei, Li Jin. Detecting dynamical complexity changes in time series using the base-scale entropy[J]. Chin. Phys., 2005, 14(12): 2428 -2432 .
[8] Wang Zhu-Yuan, Cui Yi-Ping. Behaviour of a wideband double-pass discrete Raman amplifier with simultaneous reflection of signals and multi-pump[J]. Chin. Phys., 2005, 14(2): 372 -377 .
[9] Ke Jian-Hong, Zhuang You-Yi, Lin Zhen-Quan. Aggregate growth driven by monomer transfer[J]. Chin. Phys., 2005, 14(8): 1676 -1682 .
[10] Lu Zhi-Gang, Gong Yu-Bin, Wei Yan-Yu, Wang Wen-Xiang. Study of the double rectangular waveguide grating slow-wave structure[J]. Chin. Phys., 2006, 15(11): 2661 -2668 .