Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 124702    DOI: 10.1088/1674-1056/ac11d1

Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement

Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓)
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130000, China
Abstract  Studies show that the sample thickness is an important parameter in investigating the thermal transport properties of materials under high-temperature and high-pressure (HTHP) in the diamond anvil cell (DAC) device. However, it is an enormous challenge to measure the sample thickness accurately in the DAC under severe working conditions. In conventional methods, the influence of diamond anvil deformation on the measuring accuracy is ignored. For a high-temperature anvil, the mechanical state of the diamond anvil becomes complex and is different from that under the static condition. At high temperature, the deformation of anvil and sample would be aggravated. In the present study, the finite volume method is applied to simulate the heat transfer mechanism of stable heating DAC through coupling three radiative-conductive heat transfer mechanisms in a high-pressure environment. When the temperature field of the main components is known in DAC, the thermal stress field can be analyzed numerically by the finite element method. The obtained results show that the deformation of anvil will lead to the obvious radial gradient distribution of the sample thickness. If the top and bottom surfaces of the sample are approximated to be flat, it will be fatal to the study of the heat transport properties of the material. Therefore, we study the temperature distribution and thermal conductivity of the sample in the DAC by thermal-solid coupling method under high pressure and stable heating condition.
Keywords:  diamond anvil cell      deformation      thermal conductivity      thermal-solid coupling method  
Received:  29 April 2021      Revised:  24 June 2021      Accepted manuscript online:  07 July 2021
PACS:  47.11.Fg (Finite element methods)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  51.20.+d (Viscosity, diffusion, and thermal conductivity)  
  92.60.hv (Pressure, density, and temperature)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0702700) and the National Natural Science Foundation of China (Grant Nos. 11674404 and 11774126).
Corresponding Authors:  Chunxiao Gao     E-mail:

Cite this article: 

Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓) Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement 2021 Chin. Phys. B 30 124702

[1] Walker M, Stackhouse S, Wookey J, Forte A M, Brodholt J P and Dobson D P 2014 Earth Planet. Sci. Lett. 390 175
[2] Lobanov S S, Holtgrewe N and Goncharov A F 2016 Earth Planet. Sci. Lett. 449 20
[3] Koker N 2010 Earth Planet. Sci. Lett. 292 392
[4] Ozawa H, Tateno S and Xie L 2018 High Press. Res. 38 120
[5] Saha P, Mazumder A and Mukherjee G D 2020 Geosci. Front. 11 1755
[6] Ai Q, Hu Z W, Wu L L, Sun F X and Xie M 2017 Int. J. Heat Mass Transf. 109 1181
[7] Yue D H, Ji T T, Qin T. R, Wang J, Liu C L, Jiao H, Zhao L, Han Y H and Gao C X 2018 Appl. Phys. Lett. 112 081901
[8] Hemley R J, Mao H K, Shen G Y, Badro J, Gillet P, Hanfland M and Hausermann D 1997 Science 276 1242
[9] Jing M, Wu Q and Bi Y 2013 Chin. J. High Press. Phys. 27 411
[10] Li M, Gao C X and Peng G 2007 Rev. Sci. Instrum. 78 075106
[11] Gao C X, Han Y H and MA Y Z 2005 Rev. Sci. Instrum. 76 083912
[12] Eremets M I 1996 Measurement Science and Technology 7 0597
[13] Hemley R J, Mao H K and Shen G Y 1997 Science 276 1242
[14] Mekel S, Hemley R J and MAO H K 1999 Appl. Phys. Lett. 74 656
[15] Jing Q M, Bi Y and Wu Q 2007 Rev. Sci. Instrum 78 073906
[16] Polvani D A, Fei Y, Meng J F and Badding J V 2000 Rev. Sci. Instrum 71 3138
[17] Polvani D A, Meng J F, Hasegawa M and Badding J V 1999 Rev. Sci. Instrum 70 3586
[18] Dore P L, Nucara A, Cannavò D, de Marzi G, Calvani P L, Marcelli A, Sussmann R S, Whitehead A J, Dodge C N, Krehan A J and Peter H J 1998 Appl. Opt. 37 5731
[19] Olson J R, Pohl R O, Vandersande J W, Zoltan A, Anthony T R and Banholzer W F 1993 Phys. Rev. B 47 14850
[20] Zain-ul-abdein M, Ijaz H and Saleem W 2017 Materials 10 739
[21] Jacobsona P and Stoupinb S 2019 Diam. Relat. Mater. 97 107469
[22] Valdez M N, Umemoto K and Wentzcovitch R M 2012 Appl. Phys. Lett. 101 1
[23] Krupka K M, Hemingway B S, Robie R A and Kerrick D M 1985 Am. Mineral. 70 261
[24] Ammann M W and Walker A M 2014 Earth Planet. Sci. Lett. 390 175
[25] Qian W S, Wang W Z, Zou F and Wu Z Q 2018 Geophys. Res. Lett. 45 665
[26] Yue D H, Gao Y, Zhao L, Yan Y L, Ji T T, Han Y H and Gao C X 2019 Jpn. J. Appl. Phys. 58 040906
[1] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[2] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[3] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[4] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[5] Estimation of biophysical properties of cell exposed to electric field
Hui Zhang(张辉), Liyang Wang(王李阳), Peijie Zhang(张培杰), Xiaodi Zhang(张小娣), and Jun Ma(马军). Chin. Phys. B, 2021, 30(3): 038702.
[6] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[7] Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams
Hong-Jun Zhang(张宏俊), Ji Wen(文继), Zhao-Hong Mo(莫钊洪), Hong-Rui Liu(刘鸿瑞), Xiao-Dong Wang(汪小东), Zhong-Hua Xiong(熊忠华), Jin-Wen Zhang(张锦文), and Mao-Bing Shuai(帅茂兵). Chin. Phys. B, 2021, 30(11): 117401.
[8] Characterization of size effect of natural convection in melting process of phase change material in square cavity
Shi-Hao Cao(曹世豪) and Hui Wang(王辉). Chin. Phys. B, 2021, 30(10): 104403.
[9] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[10] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[11] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[12] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[13] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[14] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[15] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
No Suggested Reading articles found!