Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 118103    DOI: 10.1088/1674-1056/ac11d0
RAPID COMMUNICATION Prev   Next  

Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber

Xu Cheng(程旭)1, Xu Zhou(周旭)2,3, Chen Huang(黄琛)1, Can Liu(刘灿)1, Chaojie Ma(马超杰)1, Hao Hong(洪浩)1, Wentao Yu(于文韬)1,‡, Kaihui Liu(刘开辉)1,4,†, and Zhongfan Liu(刘忠范)3,5,§
1 State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China;
2 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China;
3 Beijing Graphene Institute(BGI), Beijing 100095, China;
4 International Centre for Quantum Materials, Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
5 Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Abstract  Optical fiber temperature sensors have been widely employed in enormous areas ranging from electric power industry, medical treatment, ocean dynamics to aerospace. Recently, graphene optical fiber temperature sensors attract tremendous attention for their merits of simple structure and direct power detecting ability. However, these sensors based on transfer techniques still have limitations in the relatively low sensitivity or distortion of the transmission characteristics, due to the unsuitable Fermi level of graphene and the destruction of fiber structure, respectively. Here, we propose a tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber (Gr-PCF) with the non-destructive integration of graphene into the holes of PCF. This hybrid structure promises the intact fiber structure and transmission mode, which efficiently enhances the temperature detection ability of graphene. From our simulation, we find that the temperature sensitivity can be electrically tuned over four orders of magnitude and achieve up to ~ 3.34×10-3 dB/(cm·℃) when the graphene Fermi level is ~ 35 meV higher than half the incident photon energy. Additionally, this sensitivity can be further improved by ~ 10 times through optimizing the PCF structure (such as the fiber hole diameter) to enhance the light-matter interaction. Our results provide a new way for the design of the highly sensitive temperature sensors and broaden applications in all-fiber optoelectronic devices.
Keywords:  graphene      photonic crystal fiber      temperature sensor      high sensitivity      Fermi level  
Received:  10 June 2021      Revised:  25 June 2021      Accepted manuscript online:  07 July 2021
PACS:  81.05.ue (Graphene)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  42.70.Gi (Light-sensitive materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52021006, 52025023, 51991342, and 11888101), the Key R&D Program of Guangdong Province, China (Grant Nos. 2019B010931001, 2020B010189001, and 2018B030327001), the Pearl River Talent Recruitment Program of Guangdong Province, China (Grant No. 2019ZT08C321), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), Beijing Natural Science Foundation, China (Grant No. JQ19004), Beijing Municipal Science & Technology Commission, China (Grant No. Z181100004818003), the China Postdoctoral Science Foundation (Grant No. 2020M680177), National Postdoctoral Program for Innovative Talents of China (Grant No. BX20190016), and China Postdoctoral Science Foundation (Grant No. 2019M660280).
Corresponding Authors:  Wentao Yu, Kaihui Liu, Zhongfan Liu     E-mail:  khliu@pku.edu.cn;wtyu@pku.edu.cn;zfliu@pku.edu.cn

Cite this article: 

Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范) Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber 2021 Chin. Phys. B 30 118103

[1] Kaminow I P, Li T and Willner A E 2008 Optical Fiber Telecommunications V A, 5th edn. (Burlington: Academic) pp. 1-21
[2] Knight J C 2003 Nature 424 847
[3] Russell P 2003 Science 299 358
[4] Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I and Mazur E 2003 Nature 426 816
[5] Giallorenzi T G, Bucaro J A, Dandridge A, Sigel G H, Cole J H, Rashleigh S C and Priest R G 1982 IEEE J. Quantum Electron. 18 626
[6] Lee B 2003 Opt. Fiber Technol. 9 57
[7] Dragic P, Hawkins T, Foy P, Morris S and Ballato J 2012 Nat. Photon. 6 627
[8] Bhatia V and Vengsarkar A M 1996 Opt. Lett. 21 692
[9] Starodumov A N, Zenteno L A, Monzon D and DeLaRosa E 1997 Appl. Phys. Lett. 70 19
[10] Li E B, Wang X L and Zhang C 2006 Appl. Phys. Lett. 89 091119
[11] Markos C, Travers J C, Abdolvand A, Eggleton B J and Bang O 2017 Rev. Mod. Phys. 89 045003
[12] Cao Z X, Yao B C, Qin C Y, Yang R, Guo Y H, Zhang Y F, Wu Y, Bi L, Chen Y F, Xie Z D, Peng G D, Huang S W, Wong C W and Rao Y J 2019 Light Sci. Appl. 8 109
[13] Lou J Y, Wang Y P and Tong L M 2014 Sensors 14 5823
[14] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[15] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[16] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[17] Wang F, Zhang Y B, Tian C S, Girit C, Zettl A, Crommie M and Shen Y R 2008 Science 320 206
[18] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[19] Xia F N, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
[20] Romagnoli M, Sorianello V, Midrio M, Koppens F H L, Huyghebaert C, Neumaier D, Galli P, Templ W, D'Errico A and Ferrari A C 2018 Nat. Rev. Mater. 3 392
[21] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[22] Gan X T, Shiue R J, Gao Y D, Meric I, Heinz T F, Shepard K, Hone J, Assefa S and Englund D 2013 Nat. Photon. 7 883
[23] Liu Y D, Wang F Q, Wang X M, Wang X Z, Flahaut E, Liu X L, Li Y, Wang X R, Xu Y B, Shi Y and Zhang R 2015 Nat. Commun. 6 8589
[24] Falkovsky L 2008 J. Phys.: Conf. Ser. 129 012004
[25] Gusynin V P, Sharapov S G and Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222
[26] Hanson G W 2008 J. Appl. Phys. 103 064302
[27] Vakil A and Engheta N 2011 Science 332 1291
[28] Khalaf A L, Mohamad F S, Rahman N A, Lim H N, Paiman S, Yusof N A, Mahdi M A and Yaacob M H 2017 Opt. Mat. Express 7 1858
[29] Luo J J, Liu G S, Zhou W J, Hu S Q, Chen L, Chen Y F, Luo Y H and Chen Z 2020 J. Mater. Chem. C 8 12893
[30] Sridevi S, Vasu K S, Asokan S and Sood A K 2016 Opt. Lett. 41 2604
[31] Zhang J, Liao G Z, Jin S S, Cao D, Wei Q S, Lu H H, Yu J H, Cai X, Tan S Z, Xiao Y, Tang J Y, Luo Y H and Chen Z 2014 Laser Phys. Lett. 11 035901
[32] Sun Q Z, Sun X H, Jia W H, Xu Z L, Luo H P, Liu D M and Zhang L 2016 IEEE Photon. Tech. Lett. 28 383
[33] Chu R, Guan C Y, Bo Y T, Shi J H, Zhu Z, Li P, Yang J and Yuan L B 2019 IEEE Photon. Tech. Lett. 31 553
[34] Horng J, Balch H B, McGuire A F, Tsai H Z, Forrester P R, Crommie M F, Cui B X and Wang F 2016 Nat. Commun. 7 13704
[35] Chen K, Zhou X, Cheng X, Qiao R X, Cheng Y, Liu C, Xie Y D, Yu W T, Yao F R, Sun Z P, Wang F, Liu K H and Liu Z F 2019 Nat. Photon. 13 754
[36] Nielsen M D and Mortensen N A 2003 Opt. Express 11 2762
[37] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
[38] Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411
[39] Li W, Chen B G, Meng C, Fang W, Xiao Y, Li X Y, Hu Z F, Xu Y X, Tong L M, Wang H Q, Liu W T, Bao J M and Shen Y R 2014 Nano Lett. 14 955
[40] Zuo Y G, Yu W T, Liu C, Cheng X, Qiao R X, Liang J, Zhou X, Wang J H, Wu M H, Zhao Y, Gao P, Wu S W, Sun Z P, Liu K H, Bai X D and Liu Z F 2020 Nat. Nanotechnol. 15 987
[41] Kittel C and Kroemer H 1971 Thermal Physics, 2nd edn. (San Francisco: W. H. Freeman) pp. 189-191
[42] Cheng X, Zhou X, Tao L Y, Yu W T, Liu C, Cheng Y, Ma C J, Shang N Z, Xie J, Liu K H and Liu Z F 2020 Nanoscale 12 14472
[43] Liu J, Jiang X T, Zhang R Y, Zhang Y, Wu L M, Lu W, Li J Q, Li Y C and Zhang H 2019 Adv. Funct. Mater. 29 1807326
[44] Yang S, Liu Y L, Chen W, Jin W, Zhou J, Zhang H and Zakharova G S 2016 Sens. Actuators B Chem. 226 478
[45] Wan P B, Wen X M, Sun C Z, Chandran B K, Zhang H, Sun X M and Chen X D 2015 Small 11 5409
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[9] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[10] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[13] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[14] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[15] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
No Suggested Reading articles found!