Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097501    DOI: 10.1088/1674-1056/ac0e25
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2

Lijun Ni(倪丽君)1, Zhendong Chen(陈振东)1,5, Wei Li(李威)1, Xianyang Lu(陆显扬)1, Yu Yan(严羽)1, Longlong Zhang(张龙龙)1, Chunjie Yan(晏春杰)2, Yang Chen(陈阳)2, Yaoyu Gu(顾耀玉)2, Yao Li(黎遥)1, Rong Zhang(张荣)1, Ya Zhai(翟亚)3, Ronghua Liu(刘荣华)2,†, Yi Yang(杨燚)1,‡, and Yongbing Xu(徐永兵)1,4,§
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing 210093, China;
3 Department of Physics, Southeast University, Nanjing 211189, China;
4 York-Nanjing Joint Centre for Spintronics and NanoEngineering, Department of Electronic Engineering, University of York, York YO10 5DD, United Kingdom;
5 Jiangsu Key Laboratory of Opto-Electronic Technology, Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
Abstract  Among the layered two-dimensional ferromagnetic materials (2D FMs), due to a relatively high TC, the van der Waals (vdW) Fe3GeTe2 (FGT) crystal is of great importance for investigating its distinct magnetic properties. Here, we have carried out static and dynamic magnetization measurements of the FGT crystal with a Curie temperature TC ≈ 204 K. The M-H hysteresis loops with in-plane and out-of-plane orientations show that FGT has a strong perpendicular magnetic anisotropy with the easy axis along its c-axis. Moreover, we have calculated the uniaxial magnetic anisotropy constant (K1) from the SQUID measurements. The dynamic magnetic properties of FGT have been probed by utilizing the high sensitivity electron-spin-resonance (ESR) spectrometer at cryogenic temperatures. Based on an approximation of single magnetic domain mode, the K1 and the effective damping constant (αeff) have also been determined from the out-of-plane angular dependence of ferromagnetic resonance (FMR) spectra obtained at the temperature range of 185 K to TC. We have found large magnetic damping with the effective damping constant αeff~ 0.58 along with a broad linewidth (ΔHpp> 1000 Oe at 9.48 GHz, H||c-axis). Our results provide useful dynamics information for the development of FGT-based spintronic devices.
Keywords:  two-dimensional ferromagnet      ferromagnetic resonance      magnetic anisotropy      magnetic damping  
Received:  13 May 2021      Revised:  17 June 2021      Accepted manuscript online:  24 June 2021
PACS:  75.50.-y (Studies of specific magnetic materials)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the National Natural Science Foundation of China (Grant Nos. 11774150, 12074178, 61427812, 11774160, 61805116, and 61271077), and the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20192006, BK20180056, and BK20200307).
Corresponding Authors:  Ronghua Liu, Yi Yang, Yongbing Xu     E-mail:  rhliu@nju.edu.cn;malab@nju.edu.cn;ybxu@nju.edu.cn

Cite this article: 

Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵) Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2 2021 Chin. Phys. B 30 097501

[1] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[2] Geim A K and Grigorieva I V 2013 Nature 499 419
[3] Jatiyanon K, Tang I M and Soodchomshom B 2016 Chin. Phys. B 25 078104
[4] Bhimanapati G R, Z. Lin, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L B, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F N, Wang Y L, Zhu J, Akinwande D, Alem N, Schuller H A, Schaak R E, Terrones M, and Robinson J A 2015 ACS Nano 9 11509
[5] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[6] Li Q Y, Zhang P H, Li H T, Chen L N, Zhou K Y, Yan C J, Li L Y, Xu Y B, Zhang W X, Liu B, Meng H, Liu R H and Du Y W 2021 Chin. Phys. B 30 047504
[7] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[8] Fu Q W, Li Y, Chen L N, Ma F S, Li H T, Xu Y B, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 087503
[9] Zhang X, Zhao Y L, Song Q, Jia S, Shi J and Han W 2016 Jpn. J. Appl. Phys. 55 033001
[10] Park J G 2016 J. Phys.: Condens. Matter 28 301001
[11] Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D and Morpurgo A F 2018 Nano Lett. 18 4303
[12] Casto L D, Clune A J, Yokosuk M O, Musfeldt J L, Williams T J, Zhuang H L, Lin M W, Xiao K, Hennig R G, Sales B C, Yan J Q and Mandrus D 2015 APL Mater. 3 041515
[13] Sivadas N, Daniels M W, Swendsen R H, Okamoto S and Xiao D 2015 Phys. Rev. B 91 235425
[14] Williams T J, Aczel A A, Lumsden M D, Nagler S E, Stone M B, Yan J Q and Mandrus D 2015 Phys. Rev. B 92 144404
[15] McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612
[16] Zhuang H L, Xie Y, Kent P R C and Ganesh P 2015 Phys. Rev. B 92 035407
[17] Lin G T, Zhuang H L, Luo X, Liu B J, Chen F C, Yan J, Sun Y, Zhou J, Lu W J, Tong P, Sheng Z G, Qu Z, Song W H, Zhu X B and Sun Y P 2017 Phys. Rev. B 95 245212
[18] Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G 2018 Nat. Commun. 9 1554
[19] Deiseroth H -J, Aleksandrov K, Reiner C, Kienle L and Kremer R K 2006 Eur. J. Inorg. Chem. 1561-1567
[20] May A F, Calder S, Cantoni C, Cao H and McGuire M A 2016 Phys. Rev. B 93 014411
[21] Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F, Sassa Y, Mansson M, Scott B L, Wakeham N, Bauer E D and Thompson J D 2016 Phys. Rev. B 93 144404
[22] Liu S S, Yuan X, Zou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y and Xiu F X 2017 NPJ 2D Mater. Appl. 1 30
[23] Liu Y, Ivanovski V N and Petrovic C 2017 Phys. Rev. B 96 144429
[24] Yi J Y, Zhuang H L, Zou Q, Wu Z M, Cao G X, Tang S W, Calder S A, Kent P R C, Mandrus D and Gai Z 2017 2D Mater. 4 011005
[25] Liu Y, Stavitski E, Attenkofer K and Petrovic C 2018 Phys. Rev. B 97 165415
[26] Drachuck G, Salman Z, Masters M W, Taufour V, Lamichhane T N, Lin Q S, Straszheim W E, Bud'ko S L and Canfield P C 2018 Phys. Rev. B 98 144434
[27] Tian C K, Wang C, Ji W, Wang J C, Xia T L, Wang L, Liu J J, Zhang H X and Cheng P 2019 Phys. Rev. B 99 184428
[28] León-Brito N, Bauer E D, Ronning F, Thompson J D and Movshovich R 2016 J. Appl. Phys. 120 083903
[29] Mizukami S, Ando Y and Miyazaki T 2002 Phys. Rev. B 66 104413
[30] Zeisner J, Mehlawat K, Alfonsov A, Roslova M, Doert T, Isaeva A, Büchner B and Kataev V 2020 Phys. Rev. Mater. 4 064406
[31] Bhagat S M and Hirst L L 1966 Phys. Rev. 151 401
[32] Fuchs G D, Sankey J C, Pribiag V S, Qian L, Braganca P M, Garcia A G F, Ryan E M, Li Z P, Ozatay O, Ralph D C and Buhrman R A 2007 Appl. Phys. Lett. 91 062507
[33] Khan S, Zollitsch C W, Arroo D M, Cheng H, Verzhbitskiy I, Sud A, Feng Y P, Eda G and Kurebayashi H 2019 Phys. Rev. B 100 134437
[34] Mizukami S, Abe H, Watanabe D, Oogane M, Ando Y and Miyazaki T 2008 Appl. Phys. Express 1 121301
[35] Guo X B, Xi L, Li Y, Han X M, Li D, Wang Z and Zuo Y 2014 Appl. Phys. Lett. 105 072411
[36] Conca A, Papaioannou E T, Klingler S, Greser J, Sebastian T, Leven B, Lösch J and Hillebrands B 2014 Appl. Phys. Lett. 104 182407
[37] Goncalves F J T, Sogo T, Shimamoto Y, Proskurin I, Sinitsyn V E, Kousaka Y, Bostrem I G, Kishine J, Ovchinnikov A S and Togawa Y 2018 Phys. Rev. B 98 144407
[38] Woltersdorf G, Kiessling M, Meyer G, Thiele J U and Back C H 2009 Phys. Rev. Lett. 102 257602
[39] Barati E, Cinal M, Edwards D M and Umerski A 2013 EPJ Web of Conferences 40 18003
[40] Qiu Z Y, Li J, Hou D Z, Arenholz E, N'Diaye A T, Tan A, Uchida K, Sato K, Okamoto S, Tserkovnyak Y, Qiu Z Q and Saitoh E 2016 Nat. Commun. 7 12670
[41] Liu B, Ruan X Z, Wu Z Y, Tu H Q, Du J, Wu J, Lu X Y, He L, Zhang R and Xu Y B 2016 Appl. Phys. Lett. 109 042401
[42] Martín-Rio S, Pomar A, Balcells Ll, Bozzo B, Frontera C and Martínez B 2020 J. Magn. Magn. Mater. 500 166319
[43] Mizukami S, Ando Y and Miyazaki T 2001 Jpn. J. Appl. Phys. 40 580
[44] Lenz K, Kosubek E, Baberschke K, Wende H, Herfort J, Schönherr H P, Ploog K H 2005 Phys. Rev. B 72 144411
[45] Mizukami S, Kubota T, Zhang X M, Naganuma H, Oogane M, Ando Y and Miyazaki T 2011 Jpn. J. Appl. Phys. 50 103003
[46] Yin S, Zhao L, Song C, Huang Y, Gu Y D, Chen R Y, Zhu W X, Sun Y M, Jiang W J, Zhang X Z and Pan F 2021 Chin. Phys. B 30 027505
[47] Azzawi S, Hindmarch A T and Atkinson D 2017 J. Phys. D: Appl. Phys. 50 473001
[1] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[2] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[3] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[4] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[5] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[6] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[7] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[8] Magnetic phase diagram of single-layer CrBr3
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(12): 127501.
[9] Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures
Lei Shen(沈磊), Guanjie Wu(武冠杰), Tao Sun(孙韬), Zhi Meng(孟智), Chun Zhou(周春), Wenyi Liu(刘文怡), Kang Qiu(邱康), Zongwei Ma(马宗伟), Haoliang Huang(黄浩亮), Yalin Lu(陆亚林), Zongzhi Zhang(张宗芝), and Zhigao Sheng(盛志高). Chin. Phys. B, 2021, 30(12): 127502.
[10] Observation of magnetoresistance in CrI3/graphene van der Waals heterostructures
Yu-Ting Niu(牛宇婷), Xiao Lu(鲁晓), Zhong-Tai Shi(石钟太), and Bo Peng(彭波). Chin. Phys. B, 2021, 30(11): 117506.
[11] Influence of thickness on current-induced magnetization switching in L10-FePt single layer
Shi-Qi Zheng(郑诗琪), Kang-Kang Meng(孟康康), Zhen-Guo Fu(付振国), Ji-Kun Chen(陈吉堃), Jun Miao(苗君), Xiao-Guang Xu(徐晓光), and Yong Jiang(姜勇). Chin. Phys. B, 2021, 30(10): 107101.
[12] Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2
Weiwei Liu(刘维维), Dayu Yan(闫大禹), Zheng Zhang(张政), Jianting Ji(籍建葶), Youguo Shi(石友国), Feng Jin(金峰), and Qingming Zhang(张清明). Chin. Phys. B, 2021, 30(10): 107504.
[13] Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 097402.
[14] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[15] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[1] PAN HAI-BIN, ZHU CHUAN-GANG, XU PENG-SHOU, ZHOU YING-XUE, ZHANG XIN-YI, LI QI. LECTRONIC STRUCTURE STUDIES OF Bi2Sr2CaCu2-xSnxO8+δ SYSTEM[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(12): 927 -931 .
[2] Ma Yong, Yang Li-Dong, Yang Hai, Yang Zhi. Influence of external field and particle size upon theoretical photoelectron emission spectral response of silver nano-particles embedded in BaO thin film[J]. Chin. Phys., 2005, 14(8): 1665 -1670 .
[3] Wang Zhi-Yong, Xiong Cai-Dong. On the generator of Lorentz boost[J]. Chin. Phys., 2006, 15(10): 2223 -2227 .
[4] Huang Ji-Ying, Li Ying-Le. The scattering fields for a spherical target irradiated by a plane electromagnetic wave in an arbitrary direction[J]. Chin. Phys., 2006, 15(2): 281 -285 .
[5] Chen Gui-Ying, Yuan Yi-Zhe, Liang Xin, Xu Tang, Zhang Chun-Ping, Song Qi-Wang. The behaviours of optical novelty filter based on bacteriorhodopsin film[J]. Chin. Phys., 2006, 15(9): 2007 -2011 .
[6] Zhang Jian-Ming, Zou De-Shu, Xu Chen, Guo Wei-Ling, Zhu Yan-Xu, Liang Ting, Da Xiao-Li, Li Jian-Jun, Shen Guang-Di. AlGaInP thin-film LED with omni-directionally reflector and ITO transparent conducting n-type contact[J]. Chin. Phys., 2007, 16(11): 3498 -3501 .
[7] Zheng Jia-Jin, Zhang Gui-Lan, Guo Yang-Xue, Li Xiang-Ping, Chen Wen-Ju. All-optical switching and nonlinear optical properties of HBT in ethanol solution[J]. Chin. Phys., 2007, 16(4): 1047 -1051 .
[8] Zhang Kai-Wang. Quantum diffusion in semi-infinite periodic and quasiperiodic systems[J]. Chin. Phys. B, 2008, 17(3): 1113 -1118 .
[9] Yan Jing, Shan Lei, Wang Yue, Xiao Zhi-Li, Wen Hai-Hu. Quasiparticle density of states of 2H-NbSe2 single crystals revealed by low-temperature specific heat measurements according to a two-component model[J]. Chin. Phys. B, 2008, 17(6): 2229 -2235 .
[10] Ren Gang, Zheng Wan-Hua, Wang Ke, Du Xiao-Yu, Xing Ming-Xin, Chen Liang-Hui. Design of a compact polarization beam splitter based on a deformed photonic crystal directional coupler[J]. Chin. Phys. B, 2008, 17(7): 2553 -2556 .