Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097806    DOI: 10.1088/1674-1056/ac0cde
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture

Pengfei Shi(史鹏飞)1,†, Yangyang Cao(曹阳阳)1, Hongge Zhao(赵宏革)1, Renjing Gao(高仁璟)2,‡, and Shutian Liu(刘书田)2
1 College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116023, China;
2 Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116023, China
Abstract  The electromagnetic wave enhanced transmission (ET) through the sub-wavelength aperture was an unconventional physical phenomenon with great application potential. It was important to find a general design method which can realize efficient ET for arbitrary-shaped apertures. For achieving ET with maximum efficiency at specific frequency through arbitrary-shaped subwavelength aperture, a topology optimization method for designing metamaterials (MTM) microstructure was proposed in this study. The MTM was employed and inserted vertically in the aperture. The description function for the arbitrary shape of the aperture was established. The optimization model was founded to search the optimal MTM microstructure for maximum enhanced power transmission through the aperture at the demanded frequency. Several MTM microstructures for ET through the apertures with different shapes at the demanded frequency were designed as examples. The simulation and experimental results validate the feasibility of the method. The regularity of the optimal ET microstructures and their advantages over the existing configurations were discussed.
Keywords:  metamaterial      enhanced transmission      topology optimization      arbitrary-shaped aperture  
Received:  17 March 2021      Revised:  27 May 2021      Accepted manuscript online:  21 June 2021
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U1808215), the Natural Science Foundation of Liaoning Province, China (Grant No. 20180540082), and the Science and Technology Program of Shenzhen (Grant No. JSGG 20200102155001779).
Corresponding Authors:  Pengfei Shi, Renjing Gao     E-mail:  pfshi@dlmu.edu.cn;renjing@dlut.edu.cn

Cite this article: 

Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田) Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture 2021 Chin. Phys. B 30 097806

[1] Wiltshire M C, Pendry J B, Young I R, Larkman D J, Gilderdale D and Hajnal J V 2001 Science 291 849
[2] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[3] Ran J, Zhang Y, Chen X D, Fang K, Zhao J and Chen H 2016 Sci. Rep. 6 23973
[4] Jiang Q, Xiang C, Luo Y, Wu L, Zhang Q, Zhao S, Qin F and Lin J 2020 Mater. Design 185 108270
[5] Yi J, Campbell S D, Feng R, Burokur S N and Werner D H 2018 Opt. Express 26 505
[6] Zhu J, Lao C, Chen T and Li J 2020 Mater. Design 191 108618
[7] Kandwal A, Li J, Igbe T, Liu Y, Li S, Wang L, Hao Y and Nie Z 2020 Sci. Rep. 10 113
[8] Liu T and Kim S 2019 Sci. Rep. 9 16494
[9] Mei Y H, Shao Y and Hang Z H 2019 Acta Phys. Sin. 68 227803 (in Chinese)
[10] Yang X, Wei T, Chen F, Gao F, Du J and Hou Y 2020 Chin. Phys. B 29 107303
[11] Wen J, Wang K, Feng H, Chen J, Gao X, Hong R and Zhang D 2017 Plasmonics 12 1257
[12] Lee I, Sohn I, Kang C, Kee C, Yang J and Lee J W 2017 Opt. Express 25 6365
[13] Cetin A E, Turkmen M, Aksu S, Etezadi D and Altug H 2015 Appl. Phys. B 118 29
[14] Hu Y, Liu G, Liu Z, Liu X, Zhang X, Cai Z, Liu M, Gao H and Gu G 2015 Plasmonics 10 483
[15] Fan J, He Y, Jiao Y, Hao L, Zhao J and Jia S 2021 Chin. Phys. B 30 034207
[16] Bethe H A 1944 Phys. Rev. 66 163
[17] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[18] Zhu H, Yao A and Zhong M 2016 Chin. Phys. B 25 107301
[19] He M, Ma W and Wang X 2013 Chin. Phys. B 22 114201
[20] Wang Y, Duan G, Zhang L, Ma L, Zhao X and Zhang X 2018 Sci. Rep. 8 2087
[21] Liang T, Shao W, Wei X and Liang M 2018 Chin. Phys. B 27 100204
[22] Kang E S H, Ekinge H and Jonsson M P 2019 Opt. Mater. Express 9 1404
[23] Yuan J, Kan Q, Geng Z, Xie Y, Wang C and Chen H 2014 Chin. Phys. B 23 084201
[24] Malyuskin O and Fusco V 2017 Sens Imaging 18 7
[25] Guo Y S, Zhou J, Lan C W, Wu H Y and Bi K 2014 Appl. Phys. Lett. 104 204103
[26] Hajian H, Ozbay E and Caglayan H 2017 Sci. Rep. 7 4741
[27] Guo Y and Zhou J 2015 Sci. Rep. 5 8144
[28] Xiao S, Peng L and Mortensen N A 2010 Opt. Express 18 6040
[29] Ramaccia D, Palma L D, Ates D, Ozbay E, Toscano A and Bilotti F 2014 IEEE Trans. Antennas Propag. 62 2093
[30] Azemi S N and Rowe W S 2018 IEEE Antennas Wireless Propag. Lett. 17 2246
[31] Wang Y, Qin Y and Zhang Z 2014 Plasmonics 9 203
[32] Lim H, Yoo J and Choi J S 2014 Struct. Multidisc. Optim. 49 209
[33] Jung J, Goo S and Kook J 2020 Mater. Design 191 108627
[34] Diaz A R and Sigmund O A 2010 Struct. Multidisc. Optim. 41 163
[35] Lin Z, Liu V, Pestourie R and Johnson S G 2019 Opt. Express 27 15765
[1] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[2] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[3] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[4] Actively tunable dual-broadband graphene-based terahertz metamaterial absorber
Dan Hu(胡丹), Tian-Hua Meng(孟田华), Hong-Yan Wang(王红燕), and Mai-Xia Fu(付麦霞). Chin. Phys. B, 2021, 30(12): 126101.
[5] Retrieval of the effective constitutive parameters from metamaterial absorbers
Shaomei Shi(石邵美), Xiaojing Qiao(乔小晶), Shuo Liu(刘朔), and Weinan Liu(刘卫南). Chin. Phys. B, 2021, 30(11): 117803.
[6] Optical strong coupling in hybrid metal-graphene metamaterial for terahertz sensing
Ling Xu(徐玲), Yun Shen(沈云), Liangliang Gu(顾亮亮), Yin Li(李寅), Xiaohua Deng(邓晓华), Zhifu Wei(魏之傅), Jianwei Xu(徐建伟), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2021, 30(11): 118702.
[7] Solar broadband metamaterial perfect absorber based on dielectric resonant structure of Ge cone array and InAs film
Kuang-Ling Guo(郭匡灵), Hou-Hong Chen(陈厚宏), Xiao-Ming Huang(黄晓明), Tian-Hui Hu(胡天惠), and Hai-Ying Liu(刘海英). Chin. Phys. B, 2021, 30(11): 114201.
[8] Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial
Ying-Hua Wang(王英华), Jie Li(李杰), Zheng-Gao Dong(董正高), Yan Li(李妍), and Xu Zhang(张旭). Chin. Phys. B, 2021, 30(11): 114216.
[9] Multi-functional vanadium dioxide integrated metamaterial for terahertz wave manipulation
Jian-Xing Zhao(赵建行), Jian-Lin Song(宋建林), Yao Zhou(周姚), Rui-Long Zhao(赵瑞龙), Yi-Chao Liu(刘艺超), Jian-Hong Zhou(周见红). Chin. Phys. B, 2020, 29(9): 094205.
[10] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[11] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[12] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[13] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[14] Efficient and multifunctional terahertz polarization control device based on metamaterials
Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2020, 29(11): 114209.
[15] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[1] CHEN GUANG-HUA, MA GUO-BIN, YANG YING-HU. INVESTIGATION OF GROWTH CHARACTERISTICS OF MONOCRYSTALLINE C60 FILMS IN HELIUM GAS ENVIRONMENT[J]. Acta Phys. Sin. (Overseas Edition), 1997, 6(2): 125 -129 .
[2] Shao Fu-qiu, Wang Long, Wu Han-ming, Yao Xin-zi. MAGNETIC FIELD GRADIENT EFFECTS ON ION FLUX BEHAVIORS IN ECR PLASMA SOURCES[J]. Acta Phys. Sin. (Overseas Edition), 1998, 7(9): 688 -694 .
[3] Yao Xin-cheng, Li Zhao-lin, Cheng Bing-ying, Han Xue-hai, Zhang Dao-zhong. INCREASING TRANSVERSE STABILITY OF OPTICAL TWEEZERS BY USING DUAL-GAUSSIAN BEAM PROFILE[J]. Chin. Phys., 2000, 9(1): 65 -68 .
[4] Kong Ling-Jiang, Liu Mu-Ren, Huang Ping-Hua. A study of a main-road cellular automata traffic flow model[J]. Chin. Phys., 2002, 11(7): 678 -683 .
[5] M. Matsumoto, A. Morisako, S. Takei, Ma Yun-Gui, Yang Zheng. Effects of underlayer materials and substrate temperatures on the structural and magnetic properties of Nd2Fe14B films[J]. Chin. Phys., 2004, 13(11): 1969 -1974 .
[6] Wen Lei, Li Shun-Guang, Huang Guo-Song, Hu Li-Li, Jiang Zhong-Hong. Optical transitions and upconversion properties of Er3+-doped chloride tellurite glasses[J]. Chin. Phys., 2004, 13(2): 258 -263 .
[7] Luo Ying, Ma Ben-Kun, Duan Su-Qing, Zhao Xian-Geng, Wang Li-Min. Effects of a donor on the bond property of quantum-dot molecules[J]. Chin. Phys., 2004, 13(6): 942 -947 .
[8] Lin Xue-Chun, Kong Yu-Peng, Zhang Ying, Zhang Jie, Yao Ai-Yun, Bi Yong, Sun Zhi-Pei, Cui Da-Fu, Li Rui-Ning, Wu Ling-An, Xu Zu-Yan. Mid-infrared generation based on a periodically poled LiNbO3 optical parametric oscillator[J]. Chin. Phys., 2004, 13(7): 1042 -1045 .
[9] Fu Shi-Liu, Yin Tao, Chai Fei. Synthesis and characterization of Ca2Sn1-xCexO4 with blue luminescence originating from Ce4+ charge transfer transition[J]. Chin. Phys., 2007, 16(10): 3129 -3133 .
[10] Jing Ji-Liang, Pan Qi-Yuan. Resonant frequencies of massless scalar field in rotating black-brane spacetime[J]. Chin. Phys. B, 2008, 17(6): 1985 -1989 .