Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097102    DOI: 10.1088/1674-1056/ac0cdb
Special Issue: SPECIAL TOPIC — Two-dimensional magnetic materials and devices
SPECIAL TOPIC—Two-dimensional magnetic materials and devices Prev   Next  

Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12

Zhen Feng(冯振)1,2, Yi Li(李依)1, Yaqiang Ma(马亚强)1, Yipeng An(安义鹏)1,†, and Xianqi Dai(戴宪起)1,‡
1 School of Physics, Henan Normal University, Xinxiang 453007, China;
2 School of Materials Science and Engineering, Henan Institute of Technology, Xinxiang 453000, China
Abstract  The ferromagnetism of two-dimensional (2D) materials has aroused great interest in recent years, which may play an important role in the next-generation magnetic devices. Herein, a series of 2D transition metal-organic framework materials (TM-NH MOF, TM=Sc-Zn) are designed, and their electronic and magnetic characters are systematically studied by means of first-principles calculations. Their structural stabilities are examined through binding energies and ab-initio molecular dynamics simulations. Their optimized lattice constants are correlated to the central TM atoms. These 2D TM-NH MOF nanosheets exhibit various electronic and magnetic performances owing to the effective charge transfer and interaction between TM atoms and graphene linkers. Interestingly, Ni- and Zn-NH MOFs are nonmagnetic semiconductors (SM) with band gaps of 0.41 eV and 0.61 eV, respectively. Co- and Cu-NH MOFs are bipolar magnetic semiconductors (BMS), while Fe-NH MOF monolayer is a half-semiconductor (HSM). Furthermore, the elastic strain could tune their magnetic behaviors and transformation, which ascribes to the charge redistribution of TM-3d states. This work predicts several new 2D magnetic MOF materials, which are promising for applications in spintronics and nanoelectronics.
Keywords:  two-dimensional metal-organic frameworks      electronic structure      magnetic property      strain engineering  
Received:  20 April 2021      Revised:  07 June 2021      Accepted manuscript online:  21 June 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.40.Vz (Semiconductor-metal-semiconductor structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074053, 61901161, 21906041, and 11774079), the Natural Science Foundation of Henan Province, China (Grant Nos. 202300410226, 202300410237, and 202300410100), Henan Overseas Expertise Introduction Center for Discipline Innovation (Grant No. CXJD2019005), and key scientific research projects of Colleges and universities in Henan Province, China (Grant Nos. 21A480004, 152102210306, 192102310499, and 19B450001).
Corresponding Authors:  Yipeng An, Xianqi Dai     E-mail:  ypan@htu.edu.cn;xqdai@htu.edu.cn

Cite this article: 

Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起) Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12 2021 Chin. Phys. B 30 097102

[1] Mei L, Zhu S, Yin W, Chen C, Nie G, Gu Z and Zhao Y 2020 Theranostics 10 757
[2] Tan C, Cao X, Wu X, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225
[3] Wang Y, Wang L, Zhang X, Liang X, Feng Y and Feng W 2021 Nano Today 37 101059
[4] Yang C, Wang H and Xu Q 2020 Chem. Res. Chin. U. 36 10
[5] Li D, Gong Y, Chen Y, Lin J, Khan Q, Zhang Y, Li Y, Zhang H and Xie H 2020 Nano. Micro. Lett. 12 36
[6] Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y and Qiao S 2018 Chem. Rev. 118 6337
[7] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T and Ruoff R S 2006 Nature 442 282
[8] Zhou M, Lu Y, Cai Y, Zhang C and Feng Y 2011 Nanotechnology 22 385502
[9] He J, Ma S Y, Zhou P, Zhang C X, He C and Sun L Z 2012 J. Phys. Chem. C 116 26313
[10] Du J, Xia C, An Y, Wang T and Jia Y 2016 J. Mater. Sci. 51 9504
[11] Roy D, Hossain M K, Hasan S M, Milon, Hossain M A and Ahmed F 2021 Physica E 125 114359
[12] Li S, Zhou M, Li M, Lu G, Wang X, Zheng F and Zhang P 2018 J. Appl. Phys. 123 95110
[13] Yu W, Zhu Z, Niu C, Li C, Cho J and Jia Y 2016 Nnanscale Res. Lett. 11 77
[14] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[15] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[16] An Y, Wang K, Gong S, Hou Y, Ma C, Zhu M, Zhao C, Wang T, Ma S, Wang H, Wu R and Liu W 2021 npj Comput. Mater. 7 45
[17] Deng Y, Yu Y, Song Y, Zhang J, Wang N, Sun Z, Yi Y, Wu Y, Wu S, Zhu J, Wang J, Chen X and Zhang Y 2018 Nature 563 94
[18] Lin H, Yan F, Hu C, Lv Q, Zhu W, Wang Z, Wei Z, Chang K and Wang K 2020 ACS Appl. Mater. Interfaces 12 43921
[19] Hu C, Zhang D, Yan F, Li Y, Lv Q, Zhu W, Wei Z, Chang K and Wang K 2020 Sci. Bull. 65 1072
[20] Tang X and Kou L 2019 J. Phys. Chem. Lett. 10 6634
[21] Zhu G and Sun Q 2016 Comp. Mater. Sci. 112 492
[22] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y, Wu S, Zhu J, Wang J, Chen X and Zhang Y 2018 Nature 563 94
[23] Li X and Yang J 2016 Natil. Sci. Rev. 3 365
[24] Song X, Liu J, Zhang T and Chen L 2020 Sci. China Chem. 63 1391
[25] Li C, Zhang L, Chen J, Li X, Sun J, Zhu J, Wang X and Fu Y 2021 Nanoscale 13 485
[26] Yu M, Dong R and Feng X 2020 J. Am. Chem. Soc. 142 12903
[27] Zhao W, Chen T, Wang W, Jin B, Peng J, Bi S, Jiang M, Liu S, Zhao Q and Huang W 2020 Sci. Bull. 65 1803
[28] Cai D, Lu M, Li L, Cao J, Chen D, Tu H, Li J and Han W 2019 Small 15 1902605
[29] Song X, Wang X, Li Y, Zheng C, Zhang B, Di C A, Li F, Jin C, Mi W, Chen L and Hu W 2020 Angew. Chem. Int. Edit. 59 1118
[30] Jiang Q, Xiong P, Liu J, Xie Z, Wang Q, Yang X Q, Hu E, Cao Y, Sun J, Xu Y and Chen L 2020 Angew. Chem. Int. Edit. 59 5273
[31] Wu Z, Adekoya D, Huang X, Kiefel MJ, Xie J, Xu W, Zhang Q, Zhu D and Zhang S 2020 ACS Nano 14 12016
[32] Mortazavi B, Shahrokhi M, Makaremi M, Cuniberti G and Rabczuk T 2018 Mater. Today Energy 10 336
[33] Chakravarty C, Mandal B and Sarkar P 2016 J. Phys. Chem. C 120 28307
[34] Chakravarty C, Mandal B and Sarkar P 2019 J. Phys. Chem. C 124 37
[35] Zhao M, Wang A and Zhang X 2013 Nanoscale 5 144
[36] Liu J and Sun Q 2015 ChemPhysChem 16 614
[37] Dong R, Zhang Z, Tranca D C, Zhou S, Wang M, Adler P, Liao Z, Liu F, Sun Y, Shi W, Zhang Z, Zschech E, Mannsfeld S C B, Felser C and Feng X 2018 Nat. Commun. 9 2637
[38] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[39] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[40] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 77 3865
[41] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[42] Chanier T, Sargolzaei M, Opahle I, Hayn R and Koepernik K 2006 Phys. Rev. B 73 134418
[43] Wehling T O, Lichtenstein A I and Katsnelson M I 2011 Phys. Rev. B 84 235110
[44] Wang V, Xu N, Liu J C, Tang G and Geng W 2021 Comput. Phys. Commun. 108033
[45] Martyna G J, Klein M L and Mark T 1992 J. Chem. Phys. 97 2635
[46] Wang P, Jiang X, Hu J, Wang B, Zhou T, Yuan H and Zhao J 2020 Phys. Chem. Chem. Phys. 22 11045
[47] Zhang J, Zhou Z, Wang F, Li Y and Jing Y 2020 ACS Sustain. Chem. Eng. 8 7472
[48] Baidya S, Kang S, Kim C H and Yu J 2019 Sci. Rep. 9 13807
[49] Tian Y, Zhu C, Yan L, Zhao J and Su Z 2019 J. Mater. Chem. A 7 15341
[50] Cui Q, Qin G, Wang W, Geethalakshmi K R, Du A and Sun Q 2020 Appl. Surf. Sci. 500 143993
[51] Henkelman G, Arnaldsson A and Jónsson H 2006 Comp. Mater. Sci. 36 354
[52] Sun M, Ren Q, Wang S, Zhang Y, Du Y, Yu J and Tang W 2016 Comp. Mater. Sci. 118 112
[53] Song N H, Wang Y S, Zhang LY, Yang Y Y and Jia Y 2018 J. Magn. Magn. Mater. 468 252
[54] Xu Z, Hou Q, Guo F, Jia X, Li C and Li W 2018 Curr. Appl. Phys. 18 1465
[55] Wu N, Zhao X and Wang T 2016 Physica E 84 505
[56] Liu J, Ma Y, Zhao M, Yi L, Dai X and Tang Y 2018 J. Mater. Sci. 53 5114
[1] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[2] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[3] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[4] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[5] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[6] Band alignment in SiC-based one-dimensional van der Waals homojunctions
Xing-Yi Tan(谭兴毅), Lin-Jie Ding(丁林杰), and Da-Hua Ren(任达华). Chin. Phys. B, 2021, 30(12): 126102.
[7] First-principles study of electronic structure and magnetic properties of Sr3Fe2O5 oxide
Mavlanjan Rahman(买吾兰江·热合曼) and Jiuyang He(何久洋). Chin. Phys. B, 2021, 30(11): 117107.
[8] Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field
Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(11): 117103.
[9] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
[10] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[11] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[12] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[13] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[14] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[15] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[1] Ma Yong, Yang Li-Dong, Yang Hai, Yang Zhi. Influence of external field and particle size upon theoretical photoelectron emission spectral response of silver nano-particles embedded in BaO thin film[J]. Chin. Phys., 2005, 14(8): 1665 -1670 .
[2] Wang Zhi-Yong, Xiong Cai-Dong. On the generator of Lorentz boost[J]. Chin. Phys., 2006, 15(10): 2223 -2227 .
[3] Huang Ji-Ying, Li Ying-Le. The scattering fields for a spherical target irradiated by a plane electromagnetic wave in an arbitrary direction[J]. Chin. Phys., 2006, 15(2): 281 -285 .
[4] Xue Zheng-Yuan, Yi You-Min, Cao Zhuo-Liang. Scheme for sharing classical information via tripartite entangled states[J]. Chin. Phys., 2006, 15(7): 1421 -1424 .
[5] Chen Gui-Ying, Yuan Yi-Zhe, Liang Xin, Xu Tang, Zhang Chun-Ping, Song Qi-Wang. The behaviours of optical novelty filter based on bacteriorhodopsin film[J]. Chin. Phys., 2006, 15(9): 2007 -2011 .
[6] Zhang Jian-Ming, Zou De-Shu, Xu Chen, Guo Wei-Ling, Zhu Yan-Xu, Liang Ting, Da Xiao-Li, Li Jian-Jun, Shen Guang-Di. AlGaInP thin-film LED with omni-directionally reflector and ITO transparent conducting n-type contact[J]. Chin. Phys., 2007, 16(11): 3498 -3501 .
[7] Zheng Jia-Jin, Zhang Gui-Lan, Guo Yang-Xue, Li Xiang-Ping, Chen Wen-Ju. All-optical switching and nonlinear optical properties of HBT in ethanol solution[J]. Chin. Phys., 2007, 16(4): 1047 -1051 .
[8] Zhang Kai-Wang. Quantum diffusion in semi-infinite periodic and quasiperiodic systems[J]. Chin. Phys. B, 2008, 17(3): 1113 -1118 .
[9] Yan Jing, Shan Lei, Wang Yue, Xiao Zhi-Li, Wen Hai-Hu. Quasiparticle density of states of 2H-NbSe2 single crystals revealed by low-temperature specific heat measurements according to a two-component model[J]. Chin. Phys. B, 2008, 17(6): 2229 -2235 .
[10] Ren Gang, Zheng Wan-Hua, Wang Ke, Du Xiao-Yu, Xing Ming-Xin, Chen Liang-Hui. Design of a compact polarization beam splitter based on a deformed photonic crystal directional coupler[J]. Chin. Phys. B, 2008, 17(7): 2553 -2556 .