Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097601    DOI: 10.1088/1674-1056/ac0cd9
Special Issue: SPECIAL TOPIC — Two-dimensional magnetic materials and devices
SPECIAL TOPIC—Two-dimensional magnetic materials and devices Prev   Next  

Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures

Danliang Zhang(张丹亮)1,†, Chen Yi(易琛)2,†, Cuihuan Ge(葛翠环)1, Weining Shu(舒维宁)1, Bo Li(黎博)1, Xidong Duan(段曦东)3, Anlian Pan(潘安练)2,‡, and Xiao Wang(王笑)1,§
1 School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
3 Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Abstract  Two-dimensional (2D) magnetic materials have aroused tremendous interest due to the 2D confinement of magnetism and potential applications in spintronic and valleytronic devices. However, most of the currently 2D magnetic materials are achieved by the exfoliation from their bulks, of which the thickness and domain size are difficult to control, limiting the practical device applications. Here, we demonstrate the realization of thickness-tunable rhombohedral Cr2Se3 nanosheets on different substrates via the chemical vapor deposition route. The magnetic transition temperature at about 75 K is observed. Furthermore, van der Waals heterostructures consisting of Cr2Se3 nanosheets and monolayer WS2 are constructed. We observe the magnetic proximity effect in the heterostructures, which manifests the manipulation of the valley polarization in monolayer WS2. Our work contributes to the vapor growth and applications of 2D magnetic materials.
Keywords:  Cr2Se3      magnetic proximity effect      heterostructures  
Received:  13 April 2021      Revised:  28 May 2021      Accepted manuscript online:  21 June 2021
PACS:  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  42.25.Ja (Polarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52022029, 91850116, 51772084, 62090035, and U19A2090), Hunan Provincial Natural Science Foundation of China (Grant Nos. 2018RS3051 and 2018WK4004), and the Key Program of the Hunan Provincial Science and Technology Department (Grant No. 2019XK2001).
Corresponding Authors:  Anlian Pan, Xiao Wang     E-mail:;

Cite this article: 

Danliang Zhang(张丹亮), Chen Yi(易琛), Cuihuan Ge(葛翠环), Weining Shu(舒维宁), Bo Li(黎博), Xidong Duan(段曦东), Anlian Pan(潘安练), and Xiao Wang(王笑) Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures 2021 Chin. Phys. B 30 097601

[1] Burch K S, Mandrus D and Park J G 2018 Nature. 563 47
[2] Gong C, Li L, Li Z L. Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[3] Wunderlich J, Park B G, Irvine A C, Zârbo L P, Rozkotová E, Nemec P, Novák V, Sinova J and Jungwirth T 2010 Science 330 1801
[4] Zhong D, Seyler K L, Linpeng X Y, Wilson N P, Taniguchi T, Watanabe K J, McGuire M A, Fu Kai-Mei C, Xiao D, Yao W and Xu X D 2020 Nat. Nanotechnol. 15 187
[5] Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S and Chen C T 2016 Nat. Mater. 15 711
[6] Zhao C, Norden T, Zhang P Y, Zhao P Q, Cheng Y C, Sun F, Parry J P, Taheri P, Wang J Q, Yang Y H, Scrace T, Kang K F, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A and Zeng H 2017 Nat. Nanotechnol. 15 187
[7] Lyons T P, Gillard D, Molina-Sánchez A, Misra A, Withers F, Keatley P S, Kozikov A, Taniguchi T, Watanabe K, Novoselov K S, Fernández-Rossier J and Tartakovskii A I 2020 Nat. Commun. 11 6021
[8] Seyler K L, Zhong D, Huang B, Linpeng X Y, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K M C and Xu X D 2018 Nano Lett. 18 3823
[9] Zhong D, Seyler K L, Linpeng X Y, Cheng R, Nikhil S, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C and Xu X D 2017 Sci. Adv. 3 e1603113
[10] Xu L X, Lu W G, Hu C, Guo Q X, Shang S, Xu X L, Yu G H, Yan Y, Wang L H and Teng J 2020 Chin. Phys. B 29 077304
[11] Yin S Q, Zhao L, Song C, Huang Y, Gu Y D, Chen R Y, Zhu W X, Sun Y M, Jiang W J, Zhang X Z and Pan F 2021 Chin. Phys. B 30 027505
[12] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W. Zhu J Y, Wang J, Chen X H and Zhang Y B 2018 Nature 563 94
[13] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[14] Huang B, Clark G, Klein D R, Macneill D, Navarromoratalla E, Seyler K L, Wilson N, Mcguire M A, Cobden D H, Xiao D, Jarillo-Herrero P and Xu X D 2018 Nat. Nanotechnol. 13 544
[15] Liu S S, Yuan X, Zou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y and Xiu F X 2017 npj 2D Mater. Appl. 1 30
[16] Zhou S S, Wang R Y, Han J B, Wang D L, Li H Q, Gan L and Zhai T Y 2019 Adv. Funct. Mater. 29 1805880
[17] Chu J W, Zhang Y, Wen Y, Qiao R X, Wu C C, He P, Yin L, Cheng R Q, Wang F, Wang Z X, Xiong J, Li Y R and He J 2019 Nano Lett. 19 2154
[18] Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J and Zhang Y F 2019 Adv. Mater. 32 1905896
[19] Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X and He J 2019 Adv. Mater. 31 1900056
[20] Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Sendeku M G, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W and He J 2020 Nano Lett. 20 3130
[21] Huang Y, Xu K, Wang Z X, Shifa T A, Wang Q S, Wang F, Jiang C and He J 2015 Nanoscale 7 17375
[22] Ahn J H, Lee M J, Heo H, Sung J H, Kim K, Hwang H, and Jo M H 2015 Nano Lett. 15 3703
[23] Mutlu Z, Wu R J, Wickramaratne D, Shahrezaei S, Liu C, Temiz S, Patalano A, Ozkan M, Lake R K, Mkhoyan K. A and Ozkan C S 2016 Small 12 2998
[24] Wu J, Zhang C L, Yan J M, Chen L, Guo L, Chen T W, Gao G Y, Fei L F, Zhao W Y, Chai Y and Zheng R K 2020 J. Phys.: Condens. Matter 32 475801
[25] Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S and Zhou X 2018 Nat. Commun. 9 979
[26] Chen Y, Jiang Y, Yi C, Liu H W, Chen S L, Sun X X, Ma C, Li D, He C L, Luo Z Y, Jiang F, Zheng W H, Zheng B Y, Xu B Y, Xu Z Y and Pan A L 2021 Sci. China Mater. 64 1449
[27] Zhang Z P, Niu J J, Yang P F, Gong Y, Ji Q Q, Shi J P, Fang Q Y, Jiang S L, Li H, Zhou X B, Gu L, Wu X S and Zhang Y F 2017 Adv. Mater. 29 1702359
[28] Zhang D L, Zeng Z X S, Tong Q J, Jiang Y, Chen S L, Zheng B Y, Qu J Y, Li F, Zheng W H, Jiang F, Zhao H P, Huang L Y, Braun K, Meixner A J, Wang X and Pan A L 2020 Adv. Mater. 32 1908061
[29] Zhang D L, Liu Y, He M, Zhang A, Chen S L, Tong Q J, Huang L Y, Zhou Z Y, Zheng W H, Chen M X, Braun K, Meixner A J, Wang X and Pan A L 2020 Nat. Commun. 11 4442
[30] Adachi Y, Ohashi, M, Kaneko T, Yuzuri M, Yamaguchi Y, Funahashi S and Morii Y 1994 J. Phys. Soc. Jpn. 63 1548
[31] Zhang Y, Yin L, Chu J W, Shifa T A, Xia J, Wang F, Wen Y, Zhan X Y, Wang Z X and He J 2018 Adv. Mater. 30 1803665
[32] Zhang T T, Su X L, Yan Y G, Liu W, Hu T Z, Zhang C, Zhang Z K and Tang X F 2018 ACS Appl. Mater. Interfaces. 10 22389
[33] Chen J Y, Li X X, Zhou W Z, Yang J L, Ouyang F P and Xiong X 2019 Adv. Electron. Mater. 6 1900490
[34] Gong S H, Alpeggiani F, Sciacca B, Garnett E C and Kuipers L 2018 Science 359 443
[35] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
[1] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[2] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[3] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[4] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[5] Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field
Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(11): 117103.
[6] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[7] Interfacial properties of g-C3N4/TiO2 heterostructures studied by DFT calculations
Chen-Shan Peng(彭春山), Yong-Dong Zhou(周永东), Sui-Shuan Zhang(张虽栓), and Zong-Yan Zhao(赵宗彦). Chin. Phys. B, 2021, 30(1): 017101.
[8] Effect of graphene grain boundaries on MoS2/graphene heterostructures
Yue Zhang(张悦), Xiangzhe Zhang(张祥喆), Chuyun Deng(邓楚芸), Qi Ge(葛奇), Junjie Huang(黄俊杰), Jie Lu(卢捷), Gaoxiang Lin(林高翔), Zekai Weng(翁泽锴), Xueao Zhang(张学骜), Weiwei Cai(蔡伟伟). Chin. Phys. B, 2020, 29(6): 067403.
[9] Superlubricity enabled dry transfer of non-encapsulated graphene
Zhe Ying(应哲), Aolin Deng(邓奥林), Bosai Lyu(吕博赛), Lele Wang(王乐乐), Takashi Taniguchi, Kenji Watanabe, Zhiwen Shi(史志文). Chin. Phys. B, 2019, 28(2): 028102.
[10] Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2
Jinxiu Wen(温锦秀), Hao Wang(汪浩), Huanjun Chen(陈焕君), Shaozhi Deng(邓少芝), Ningsheng Xu(许宁生). Chin. Phys. B, 2018, 27(9): 096101.
[11] Review of photoinduced effect in manganite films and their heterostructures
Xin-Yu Li(李欣谕), Long Zhao(赵龙), Xiang-Yang Wei(魏向洋), Hao Li(李豪), Ke-Xin Jin(金克新). Chin. Phys. B, 2018, 27(11): 117501.
[12] Transport properties of doped Bi2Se3 and Bi2Te3 topological insulators and heterostructures
Zhen-Hua Wang(王振华), Xuan P A Gao(高翾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2018, 27(10): 107901.
[13] The origin of spin current in YIG/nonmagnetic metal multilayers at ferromagnetic resonance
Yun Kang(康韵), Hai Zhong(钟海), Runrun Hao(郝润润), Shujun Hu(胡树军), Shishou Kang(康仕寿), Guolei Liu(刘国磊), Yin Zhang(张引), Xiangrong Wang(王向荣), Shishen Yan(颜世申), Yong Wu(吴勇), Shuyun Yu(于淑云), Guangbing Han(韩广兵), Yong Jiang(姜勇), Liangmo Mei(梅良模). Chin. Phys. B, 2017, 26(4): 047202.
[14] Spin transport in a Zigzag normal/ferromagnetic graphene junction
Shi Hao-Sheng, Vahram L. Grigoryan. Chin. Phys. B, 2015, 24(5): 057202.
[15] Interface-guided mode of Lamb waves in a two-dimensional phononic crystal plate
Huang Ping-Ping, Yao Yuan-Wei, Wu Fu-Gen, Zhang Xin, Li Jing, Hu Ai-Zhen. Chin. Phys. B, 2015, 24(5): 054301.
[1] Li Shao-Hui, Li Ru-Xin, Ni Guo-Quan, Xu Zhi-Zhan. Electron impact ionization of large krypton clusters[J]. Chin. Phys., 2004, 13(10): 1684 -1688 .
[2] Feng Chun-Hua, Wang Wen-Hao, He Ye-Xi, Gao Zhe, Zeng Li, Zhang Guo-Ping, Xie Li-Feng. Observation of intermittency in edge plasma of SUNIST tokamak[J]. Chin. Phys., 2004, 13(12): 2091 -2096 .
[3] Rong Chuan-Bing, Zhang Jian, Du Xiao-Bo, Zhang Hong-Wei, Zhang Shao-Ying, Shen Bao-Gen. Magnetic properties and coercivity mechanism of precipitation-hardened Gd-Co based ribbons[J]. Chin. Phys., 2004, 13(7): 1144 -1148 .
[4] Ning Xin-Bao, Wu Wei, Ma Xiao-Fei, Li Jin. Detecting dynamical complexity changes in time series using the base-scale entropy[J]. Chin. Phys., 2005, 14(12): 2428 -2432 .
[5] Wang Zhu-Yuan, Cui Yi-Ping. Behaviour of a wideband double-pass discrete Raman amplifier with simultaneous reflection of signals and multi-pump[J]. Chin. Phys., 2005, 14(2): 372 -377 .
[6] Ke Jian-Hong, Zhuang You-Yi, Lin Zhen-Quan. Aggregate growth driven by monomer transfer[J]. Chin. Phys., 2005, 14(8): 1676 -1682 .
[7] Lu Zhi-Gang, Gong Yu-Bin, Wei Yan-Yu, Wang Wen-Xiang. Study of the double rectangular waveguide grating slow-wave structure[J]. Chin. Phys., 2006, 15(11): 2661 -2668 .
[8] Cai Xin-Hua, Guo Jie-Rong, Nie Jian-Jun, Jia Jin-Ping. Entanglement diversion and quantum teleportation of entangled coherent states[J]. Chin. Phys., 2006, 15(3): 488 -491 .
[9] Li Mi-Shan, Tian Qiang. Discrete gap breathers in a diatomic K2--K3--K4 chain with cubic nonlinearity[J]. Chin. Phys., 2007, 16(1): 228 -235 .
[10] Wang Xiang-Hui, Lin Lie, Zhang Yang. Analysis of second-harmonic generation microscopy under refractive index mismatch[J]. Chin. Phys., 2007, 16(11): 3285 -3289 .