Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097303    DOI: 10.1088/1674-1056/ac0cd7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4

Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才)
Department of Physics, Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
Abstract  Extremely large magnetoresistance (XMR) has been explored in many nonmagnetic topologically nontrivial/trivial semimetals, while it is experimentally ambiguous which mechanism should be responsible in a specific material due to the complex electronic structures. In this paper, the magnetoresistance origin of single crystal CaAl4 with C2/m structure at low temperature is investigated, exhibiting unsaturated magnetoresistance of ~ 3000% at 2.5 K and 14 T as the fingerprints of XMR materials. By the combination of ARPES and the first-principles calculations, we elaborate multiband features and anisotropic Fermi surfaces, which can explain the mismatch of isotropic two-band model. Although the structural phase transition from I4/mmm to C2/m has been recognized, the subtle impact on electronic structure is revealed by our ARPES measurements. Considering that both charge compensation and potential topologically nontrivial band structure exist in CaAl4, our findings report CaAl4 as a new reference material for exploring the XMR phenomena.
Keywords:  magnetoresistance      angle-resolved photoemission spectroscopy (ARPES)      topological semimetal  
Received:  19 April 2021      Revised:  15 June 2021      Accepted manuscript online:  21 June 2021
PACS:  73.43.Qt (Magnetoresistance)  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774421, 12074425, 11874422, 11574391, and 11774424), the National Key Research and Development Program of China (Grant No. 2019YFA0308602), and the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant Nos. 19XNLG13, 18XNLG14, and 19XNLG18).
Corresponding Authors:  Shan-Cai Wang     E-mail:  SCW@ruc.edu.cn

Cite this article: 

Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才) High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4 2021 Chin. Phys. B 30 097303

[1] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[2] Zeng L K, Lou R, Wu D S, Xu Q N, Guo P J, Kong L Y, Zhong Y G, Ma J Z, Fu B B, Richard P, Wang P, Liu G T, Lu L, Huang Y B, Fang C, Sun S S, Wang Q, Wang L, Shi Y G, Weng H M, Lei H C, Liu K, Wang S C, Qian T, Luo J L and Ding H 2016 Phys. Rev. Lett. 117 127204
[3] Xu J, Ghimire N J, Jiang J S, Xiao Z L, Botana A S, Wang Y L, Hao Y, Pearson J E and Kwok W K 2017 Phys. Rev. B 96 075159
[4] He J, Zhang C, Ghimire N J, Liang T, Jia C, Jiang J, Tang S, Chen S, He Y, Mo S K, Hwang C C, Hashimoto M, Lu D H, Moritz B, Devereaux T P, Chen Y L, Mitchell J F and Shen Z X 2016 Phys. Rev. Lett. 117 267201
[5] Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z K, Chen Y L, Schnelle W, Borrmann H, Grin Y, Felser C and Yan B H 2015 Nat. Phys. 11 645
[6] Ghimire N J, Botana A S, Phelan D, Zheng H and Mitchell J F 2016 J. Phys. Condens. Matter 28 235601
[7] Zhu Z, Lin X, Liu J, Fauque B, Tao Q, Yang C, Shi Y and Behnia K 2015 Phys. Rev. Lett. 114 176601
[8] Gao W, Hao N, Zheng F W, Ning W, Wu M, Zhu X, Zheng G, Zhang J, Lu J, Zhang H, Xi C, Yang J, Du H, Zhang P, Zhang Y and Tian M 2017 Phys. Rev. Lett. 118 256601
[9] Yao Q, Du Y P, Yang X J, Zheng Y, Xu D F, Niu X H, Shen X P, Yang H F, Dudin P, Kim T K, Hoesch M, Vobornik I, Xu Z A, Wan X G, Feng D L and Shen D W 2016 Phys. Rev. B 94 235140
[10] Li Y K, Li L, Wang J L, Wang T T, Xu X F, Xi C Y, Cao C and Dai J H 2016 Phys. Rev. B 94 121115
[11] Luo Y, McDonald R D, Rosa P F, Scott B, Wakeham N, Ghimire N J, Bauer E D, Thompson J D and Ronning F 2016 Sci. Rep. 6 27294
[12] Shen B, Deng X Y, Kotliar G and Ni N 2016 Phys. Rev. B 93 195119
[13] Yuan Z J, Lu H, Liu Y J, Wang J F and Jia S 2016 Phys. Rev. B 93 184405
[14] Wu D S, Liao J, Yi W, Wang X, Li P G, Weng H M, Shi Y G, Li Y Q, Luo J L, Dai X and Fang Z 2016 Appl. Phys. Lett. 108 494024
[15] Wang Y Y, Yu Q H, Guo P J, Liu K and Xia T L 2016 Phys. Rev. B 94 041103
[16] Wang Y Y, Yu Q H and Xia T L 2016 Chin. Phys. B 25 107503
[17] Jing Y M, Huang S Y, Wu J X, Peng H L and Xu H Q 2018 Acta. Phys. Sin. 67 047301 (in Chinese)
[18] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280
[19] Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023
[20] Xu Q N, Song Z D, Nie S M, Weng H M, Fang Z and Dai X 2015 Phys. Rev. B 92 205310
[21] Kumar N, Manna K, Qi Y, Wu S C, Wang L, Yan B, Felser C and Shekhar C 2017 Phys. Rev. B 95 121109
[22] Hu J, Tang Z, Liu J, Liu X, Zhu Y, Graf D, Myhro K, Tran S, Lau C N, Wei J and Mao Z 2016 Phys. Rev. Lett. 117 016602
[23] Lou R, Xu Y F, Zhao L X, Han Z Q, Guo P J, Li M, Wang J C, Fu B B, Liu Z H, Huang Y B, Richard P, Qian T, Liu K, Chen G F, Weng H M, Ding H and Wang S C 2017 Phys. Rev. B 96 241106
[24] Zhou Y X, Lou Z F, Zhang S N, Chen H C, Chen Q, Xu B J, Du J H, Yang J H, Wang H D, Xi C Y, Pi L, Wu Q S, Yazyev O V and Fang M H 2020 Phys. Rev. B 102 115145
[25] Du J H, Lou Z F, Zhang S N, Zhou Y X, Xu B J, Chen Q, Tang Y Q, Chen S J, Chen H C, Zhu Q Q, Wang H D, Yang J H, Wu Q S, Yazyev O V and Fang M H 2018 Phys. Rev. B 97 245101
[26] Wang K, Graf D, Li L, Wang L and Petrovic C 2014 Sci. Rep. 4 7328
[27] Xu S, Zhang J F, Wang Y Y, Sun L L, Wang H, Su Y, Wang X Y, Liu K and Xia T L 2019 Phys. Rev. B 99 115138
[28] Blochl P E 1994 Phys. Rev. B 50 17953
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109
[32] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[33] Miller G J, Li F and Franzen H F 1993 J. Am. Chem. Soc. 115 3739
[34] Zogg H and Schwellinger P 1979 J. Mater. Sci. 14 1923
[35] Luttinger J M 1960 Phys. Rev. 119 1153
[36] Luttinger J M and Ward J C 1960 Phys. Rev. 118 1417
[1] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[2] Current-dependent positive magnetoresistance inLa0.8Ba0.2MnO3 ultrathin films
Guankai Lin(林冠凯), Haoru Wang(王昊儒), Xuhui Cai(蔡旭晖), Wei Tong(童伟), and Hong Zhu(朱弘). Chin. Phys. B, 2021, 30(9): 097502.
[3] Magneto-transport properties of thin flakes of Weyl semiconductor tellurium
Nan Zhang(张南), Bin Cheng(程斌), Hui Li(李惠), Lin Li(李林), and Chang-Gan Zeng(曾长淦). Chin. Phys. B, 2021, 30(8): 087304.
[4] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[5] Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001) heterostructures
Shuang-Long Yang(杨双龙), De-Zheng Yang(杨德政), Yu Miao(缪宇), Cun-Xu Gao(高存绪), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2021, 30(12): 127302.
[6] Observation of magnetoresistance in CrI3/graphene van der Waals heterostructures
Yu-Ting Niu(牛宇婷), Xiao Lu(鲁晓), Zhong-Tai Shi(石钟太), and Bo Peng(彭波). Chin. Phys. B, 2021, 30(11): 117506.
[7] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
[8] Anomalous magnetoresistance in detwinned EuFe2As2
Zhuang Xu(徐状), Junxiang Pan(潘俊香), Zhen Tao(陶镇), Ruixian Liu(刘瑞鲜), Guotai Tan(谈国太). Chin. Phys. B, 2020, 29(7): 077402.
[9] Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection
Jing-Min Hou(侯净敏). Chin. Phys. B, 2020, 29(12): 120305.
[10] Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers
Ying-Yi Tian(田颖异), Shuan-Hu Wang(王拴虎), Gang Li(李刚), Hao Li(李豪), Shu-Qin Li(李书琴), Yang Zhao(赵阳), Xiao-Min Cui(崔晓敏), Jian-Yuan Wang(王建元), Lv-Kuan Zou(邹吕宽), and Ke-Xin Jin(金克新). Chin. Phys. B, 2020, 29(11): 117504.
[11] Investigation of the magnetoresistance in EuS/Nb:SrTiO3 junction
Jia Lu(芦佳), Yu-Lin Gan(甘渝林), Yun-Lin Lei(雷蕴麟), Lei Yan(颜雷), and Hong Ding(丁洪)$. Chin. Phys. B, 2020, 29(11): 117503.
[12] Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor
Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林)†, and X J Zhou(周兴江)‡. Chin. Phys. B, 2020, 29(10): 107402.
[13] Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions
Yan-Qi Li(李彦琪), Hong-Jun Kan(阚洪君), Yuan-Yuan Miao(苗圆圆), Lei Yang(杨磊), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), Gui-Chao Hu(胡贵超). Chin. Phys. B, 2020, 29(1): 017303.
[14] Visualization of tunnel magnetoresistance effect in single manganite nanowires
Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健). Chin. Phys. B, 2020, 29(1): 018501.
[15] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[1] Lü YAN-NAN, DING E-JIANG. THE INHOMOGENEOUS PERIODIC STATES IN A COUPLED MAP LATTICE[J]. Acta Phys. Sin. (Overseas Edition), 1992, 1(1): 3 -10 .
[2] HE YUAN-JIN, WU WEN, DUAN XIAO-DONG. POSITRONIUM EMISSION FROM SURFACE OF Si SUBSTRATES PASSIVATED BY HF ETCHING[J]. Acta Phys. Sin. (Overseas Edition), 1993, 2(7): 544 -549 .
[3] SI JIN-HAI, ZHAO JIANG, WANG YOU-GUI, YE PEI-XIAN. THEORETICAL STUDIES ON LASER-INDUCED GRATINGS IN ORGANIC PHOTOISOMERS[J]. Acta Phys. Sin. (Overseas Edition), 1996, 5(7): 511 -519 .
[4] ZHANG DAO-ZHONG, LI ZHAO-LIN, CHENG BING-YING. THE REFLECTIVE PROPERTIES OF BROADBAND OPTICAL MULTILAYERS[J]. Acta Phys. Sin. (Overseas Edition), 1997, 6(5): 372 -381 .
[5] Peng Jin-sheng, Tian Yong-hong, Xu Da-hai, Han Li-bo. INFLUENCE OF THE DIPOLE-DIPOLE INTERACTION BETWEEN ATOMS ON THE PHASE PROPERTIES OF LIGHT[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(4): 252 -260 .
[6] Sun Lian-feng, Mao Jian-min, Chang Bao-he, Pan Zheng-wei, Wang Gang, Zhou Wei-ya. STRUCTURE AND MORPHOLOGY OF CARBON NANOTUBES GROWN ON ZEOLITE-SUPPORTED CATALYSTS BY CHEMICAL VAPOR DEPOSITION[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(7): 545 -550 .
[7] Xue Ju-Kui, Duan Wen-Shan, Lang He. Modulational instability of ion-acoustic waves in a warm plasma[J]. Chin. Phys., 2002, 11(11): 1184 -1187 .
[8] Ruan Cun-Jun, Pang Wen-Ning, Gao Jun-Fang, Shang Ren-Cheng. Study on optical electron polarimeter and measurement of the relative Stokes parameters of weak light[J]. Chin. Phys., 2002, 11(2): 126 -131 .
[9] Zhang Yan-Liang, Jiang Li, Sun Zhen-Rong, Ding Liang-En, Wang Zu-Geng. Effect of four-wave mixing on electromagnetically induced transparency in Λ-type system with a two-photon probe field[J]. Chin. Phys., 2003, 12(2): 174 -177 .
[10] Li Jia-Hua, Yang Wen-Xing, Peng Ju-Cun. Preparation of multicomponent motional coherent and squeezed coherent states of a trapped ion[J]. Chin. Phys., 2004, 13(10): 1700 -1706 .