Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024202    DOI: 10.1088/1674-1056/ac0cd4
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-fidelity resonant tunneling passage in three-waveguide system

Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军)
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  An N-stage three-waveguide system is proposed to improve the robustness and the fidelity of the resonant tunneling passage. The analytic solutions to the tunneling dynamics at the output are derived. When the number of subsystems increases, tunneling efficiency approaches to 100% in a large range and resonant tunneling is robust against variations in the phase mismatch and peak tunneling rate.
Keywords:  amplitude control      resonant tunneling passage      robustness  
Received:  22 April 2021      Revised:  14 June 2021      Accepted manuscript online:  21 June 2021
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
Fund: Project supported by the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2018JM6064).
Corresponding Authors:  Jian Shi     E-mail:  shijian@xupt.edu.cn

Cite this article: 

Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军) High-fidelity resonant tunneling passage in three-waveguide system 2022 Chin. Phys. B 31 024202

[1] Bloch F 1946 Phys. Rev. 70 460
[2] Yatsenko L P, Shore B W, Halfmann T, Bergmann K and Vardi A 1999 Phys. Rev. A 60 R4237
[3] Rickes T, Yatsenko L P, Steuerwald S, Halfmann T, Shore B W, Vitanov N V and Bergmann K 2000 J. Chem. Phys. 113 534
[4] Vitanov N V, Yatsenko L P and Bergmann K 2003 Phys. Rev. A 68 043401
[5] Vitanov N V, Rangelov A A, Shore B W and Bergmann K 2017 Rev. Mod. Phys. 89 015006
[6] Shi J, Ma R Q, Duan Z L, Liang M, Chai B Y and Dong J 2017 Chin. Phys. B 26 124214
[7] Liu Y X and Zhao B 2020 Chin. Phys. B 29 023103
[8] Dykhne A M 1962 Sov. Phys. JETP 14 941
[9] Davis J P and Pechukas P 1976 J. Chem. Phys. 64 3129
[10] Vasilev G S, Kuhn A and Vitanov N V 2009 Phys. Rev. A 80 013417
[11] Guérin S, Hakobyan V and Jauslin H R 2011 Phys. Rev. A 84 013423
[12] Dridi G, Guérin S, Hakobyan V, Jauslin H R and Eleuch H 2009 Phys. Rev. A 80 043408
[13] Shapiro E A, Milner V, Menzel-Jones C and Shapiro M 2007 Phys. Rev. Lett. 99 033002
[14] Shapiro E A, Milner V and Shapiro M 2009 Phys. Rev. A 79 023422
[15] Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martinez-Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001
[16] Yu L, Xu J, Wu J L and Ji X 2017 Chin. Phys. B 26 060306
[17] Torosov B T, Della Valle G and Longhi S 2013 Phys. Rev. A 87 052502
[18] Torosov B T, Guérin S and Vitanov N V 2011 Phys. Rev. Lett. 106 233001
[19] Dou F Q, Cao H, Liu J and Fu L B 2016 Phys. Rev. A 93 043419
[20] Torosov B T and Vitanov N V 2013 Phys. Rev. A 87 043418
[21] Bruns A, Genov G T, Hain M, Vitanov N V and Halfmann T 2018 Phys. Rev. A 98 053413
[22] Longhi S 2009 Laser Photon. Rev. 3 243
[23] Ma R Q, Chai B Y, Liang M, Duan Z L, Zhang W W, Dong J and Shi J 2019 Opt. Commun. 430 1
[24] Tseng S Y 2014 Opt. Lett. 39 6600
[25] Paul K and Sarma A K 2015 Phys. Rev. A 91 053406
[26] Chen X, Wen R D, Shi J L and Tseng S Y 2018 J. Opt. 20 045804
[27] Torosov B T, Della Valle G and Longhi S 2014 Phys. Rev. A 89 063412
[28] Hristova H S, Rangelov A A, Montemezzani G and Vitanov N V 2016 Phys. Rev. A 93 033802
[29] Paspalakis E 2006 Opt. Commun. 258 30
[30] Grigoryan G G, Nikoghosyan G V, Halfmann T, Pashayan-Leroy Y T, Leroy C and Guérin S 2009 Phys. Rev. A 80 033402
[31] Shi J, Ma R Q and Liu L 2020 J. Phys. Soc. Jpn. 89 064006
[32] Longhi S, Della Valle G, Ornigotti M and Laporta P 2007 Phys. Rev. B 76 201101
[33] Popescu V A and Puscas N N 2005 Opt. Commun. 254 197
[34] Liu H and Wei L F 2017 J. Lightwave Technol. 35 166
[35] Rangelov A A and Vitanov N V 2012 Phys. Rev. A 85 043407
[36] Vitanov N V 1998 J. Phys. B 31 709
[37] Della Valle G, Taccheo S, Laporta P, Sorbello G, Cianci E and Foglietti V 2006 Electron. Lett. 42 632
[38] Zhou J, Luo H, Wen S and Zeng Y 2009 Opt. Commun. 282 2670
[39] Liu C X, Shen X L, Li W N and Wei W 2017 Chin. Phys. B 26 034207
[40] Hope A P, Nguyen T G, Mitchell A and Greentree A D 2015 J. Phys. B 48 055503
[1] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[2] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[3] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[4] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[5] A memristive map with coexisting chaos and hyperchaos
Sixiao Kong(孔思晓), Chunbiao Li(李春彪), Shaobo He(贺少波), Serdar Çiçek, and Qiang Lai(赖强). Chin. Phys. B, 2021, 30(11): 110502.
[6] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[7] Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code
Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕). Chin. Phys. B, 2019, 28(7): 070304.
[8] Amplitude and phase controlled absorption and dispersion of coherently driven five-level atom in double-band photonic crystal
Li Jiang(姜丽), Ren-Gang Wan(万仁刚). Chin. Phys. B, 2019, 28(2): 024206.
[9] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[10] The robustness of sparse network under limited attack capacity
Xiao-Juan Wang(王小娟), Mei Song(宋梅), Lei Jin(金磊), Zhen Wang(王珍). Chin. Phys. B, 2017, 26(8): 088901.
[11] Linear synchronization and circuit implementation of chaotic system with complete amplitude control
Chun-Biao Li(李春彪), Wesley Joo-Chen Thio, Julien Clinton Sprott, Ruo-Xun Zhang(张若洵), Tian-Ai Lu(陆天爱). Chin. Phys. B, 2017, 26(12): 120501.
[12] Degree distribution and robustness of cooperativecommunication network with scale-free model
Wang Jian-Rong (王建荣), Wang Jian-Ping (王建萍), He Zhen (何振), Xu Hai-Tao (许海涛). Chin. Phys. B, 2015, 24(6): 060101.
[13] Effects of systematic phase errors on optimized quantum random-walk search algorithm
Zhang Yu-Chao (张宇超), Bao Wan-Su (鲍皖苏), Wang Xiang (汪翔), Fu Xiang-Qun (付向群). Chin. Phys. B, 2015, 24(6): 060304.
[14] Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
Tang Xu-Bing (唐绪兵), Gao Fang (高放), Wang Yao-Xiong (王耀雄), Kuang Sen (匡森), Shuang Feng (双丰). Chin. Phys. B, 2015, 24(3): 034208.
[15] An effective method to improve the robustness of small-world networks under attack
Zhang Zheng-Zhen (张争珍), Xu Wen-Jun (许文俊), Zeng Shang-You (曾上游), Lin Jia-Ru (林家儒). Chin. Phys. B, 2014, 23(8): 088902.
No Suggested Reading articles found!