Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 028501    DOI: 10.1088/1674-1056/ac0cd3
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling of high permittivity insulator structure with interface charge by charge compensation

Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮)
School of Information Science and Technology, Southwest Jiao Tong University, Chengdu 611756, China
Abstract  An analytical model of the power metal-oxide-semiconductor field-effect transistor (MOSFET) with high permittivity insulator structure (HKMOS) with interface charge is established based on superposition and developed for optimization by charge compensation. In light of charge compensation, the disturbance aroused by interface charge is efficiently compromised by introducing extra charge for maximizing breakdown voltage (BV) and minimizing specific ON-resistance (Ron,sp). From this optimization method, it is very efficient to obtain the design parameters to overcome the difficulty in implementing the Ron,sp-BV trade-off for quick design. The analytical results prove that in the HKMOS with positive or negative interface charge at a given length of drift region, the extraction of the parameters is qualitatively and quantitatively optimized for trading off BV and Ron,sp with JFET effect taken into account.
Keywords:  charge compensation      breakdown voltage      high permittivity      interface charge      super-junction  
Received:  23 April 2021      Revised:  15 June 2021      Accepted manuscript online:  21 June 2021
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  51.50.+v (Electrical properties)  
Corresponding Authors:  Zhi-Gang Wang     E-mail:  zhigangwang@swjtu.edu.cn

Cite this article: 

Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮) Modeling of high permittivity insulator structure with interface charge by charge compensation 2022 Chin. Phys. B 31 028501

[1] Wang Y, Wang Z, Bai T and Kuo J B 2018 Trans. Electron Dev. 65 1056
[2] Mao S J, Zhu Z Y, Wang G L, Zhu H L, Li J F and Zhao C 2016 Chin. Phys. Lett. 33 118502
[3] Yao J F, Guo Y F, Zhang Z Y, Yang K M, Zhang M L and Xia T 2020 Chin. Phys. B 29 038503
[4] Wu L J, Zhang Z J, Song Y, Yang H, Hu L M and Yuan N 2017 Chin. Phys. B 26 027101
[5] Wang C L and Sun J 2009 Chin. Phys. B 18 1231
[6] Chen X and Huang M 2012 Trans. Electron Dev. 59 2430
[7] Huang J Q, He W W, Chen J, Luo J X, Lu K and Chai Z 2016 Chin. Phys. Lett 33 096101
[8] Guan H, Lv H L, Guo H, Zhang Y M, Zhang Y M and Wu L F 2015 Chin. Phys. B 24 126701
[9] Wang Z, Wang X and Kuo J B 2018 Trans. Electron Dev. 65 4947
[10] Zhang W, Zhang B, Qiao M, Luo X and Li Z 2016 Trans. Electron Dev. 64 224
[11] Chen X, Wang Z, Wang X and Kuo J B 2018 Chin. Phys. B 27 048502
[12] Qi L W, Meng J, Liu X Y, Weng Y, Liu Z C, Zhang D H, Zhou J T and Jin Z 2020 Chin. Phys. B 29 104212
[13] Hu S, Yang L, Mi M H, Hou B, Liu S, Zhang M, Wu M, Zhu Q, Wu S, Lu Y, Zhu J J, Zhou X W, Lv L, Ma X H and Hao Y 2020 Chin. Phys. B 29 087305
[14] Wang Z G, Zhang B, Fu Q, Xie G and Li Z J 2012 IEEE Electron Dev. Lett. 33 703
[15] Ren M, Li Z H, Deng G M, Zhang L X, Zhang M, Liu X L, Xie J X and Zhang B 2012 Chin. Phys. B 21 048502
[16] Huang H, Xu S, Xu W, Hu K, Cheng J, Hu H and Yi B 2020 Trans. Electron Dev. 67 2463
[17] Huang H, Hu K, Xu W, Xu S, Cui W, Zhang W and Ng W T 2020 Trans. Electron Dev. 67 3898
[18] Wangsness R K 1979 Electromagnetic fields (New York:Wiley)
[19] Baliga B J 2010 Fundamentals of power semiconductor devices (Berlin:Springer Science & Business Media)
[20] Hou X Y, Huang R, Chen G, Liu S, Zhang X, Yu B and Wang Y Y 2008 Chin. Phys. B 17 0685
[21] Chen S Z and Sheng K 2014 Chin. Phys. B 23 077201
[22] Zhang W, Zhang B, Qiao M, Li Z, Luo X and Li Z 2016 Trans. Electron Dev. 63 1984
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[3] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[4] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[5] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[8] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[9] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[10] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[13] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[14] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[15] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
No Suggested Reading articles found!