Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097507    DOI: 10.1088/1674-1056/ac0cd1
Special Issue: SPECIAL TOPIC — Two-dimensional magnetic materials and devices
SPECIAL TOPIC—Two-dimensional magnetic materials and devices Prev   Next  

Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure

Jimin Shang(商继敏)1, Shuai Qiao(乔帅)1, Jingzhi Fang(房景治)2, Hongyu Wen(文宏玉)2,†, and Zhongming Wei(魏钟鸣)2
1 School of Physics and Electronics Engineering, Zhengzhou University of Light Industry&Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
2 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences&Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
Abstract  Exploring two-dimensional (2D) magnetic heterostructures is essential for future spintronic and optoelectronic devices. Herein, using first-principle calculations, stable ferromagnetic ordering and colorful electronic properties are established by constructing the VS2/C3N van der Waals (vdW) heterostructure. Unlike the semiconductive properties with indirect band gaps in both the VS2 and C3N monolayers, our results indicate that a direct band gap with type-Ⅱ band alignment and p-doping characters are realized in the spin-up channel of the VS2/C3N heterostructure, and a typical type-Ⅲ band alignment with a broken-gap in the spin-down channel. Furthermore, the band alignments in the two spin channels can be effectively tuned by applying tensile strain. An interchangement between the type-Ⅱ and type-Ⅲ band alignments occurs in the two spin channels, as the tensile strain increases to 4%. The attractive magnetic properties and the unique band alignments could be useful for prospective applications in the next-generation tunneling devices and spintronic devices.
Keywords:  two-dimensional ferromagnetic material      van der Waals heterostructure      band alignment      strain  
Received:  25 April 2021      Revised:  17 June 2021      Accepted manuscript online:  21 June 2021
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  61.82.Fk (Semiconductors)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0207500), Natural Science Foundation of Henan Province, China (Grant No. 202300410507), and Key Research & Development and Promotion Projects in Henan Province, China (Grant No. 212102210134).
Corresponding Authors:  Hongyu Wen     E-mail:  wenhongyu@semi.ac.cn

Cite this article: 

Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣) Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure 2021 Chin. Phys. B 30 097507

[1] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[2] Hong X P, Kim J and Shi S F 2014 Nat. Nanotechnol. 9 682
[3] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289
[4] O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125
[5] Shang J M, Pan L F, Wang X T, Li J B, Deng H X and Wei Z M 2018 J. Mater. Chem. C 6 7201
[6] Liang S J, Cheng B, Cui X and Miao F 2020 Adv. Mater. 32 1903800
[7] Shang J M, Zhang S, Wang Y Q, Wen H Y and Wei Z M 2019 Chin. Opt. Lett. 17 020010
[8] Tan X Y, Liu L L and Ren D H 2020 Chin. Phys. B 29 076102
[9] González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, UgedaM M, Veuillen J Y, Yndurain F and Brihuega I 2016 Science 352 437
[10] Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J and Wei Z 2017 Nature Commun. 8 1958
[11] Ge J, Luo T, Lin Z, Shi J, Liu Y, Wang P, Zhang Y, Duan W and Wang J 2021 Adv. Mater. 33 2005465
[12] Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B 81 085442
[13] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[14] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[15] Ma Y, Dai Y, Guo M, Niu C, Zhu Y and Huang B 2012 ACS Nano 6 1695
[16] Zhuang H L and Hennig R G 2016 Phys. Rev. B 93 054429
[17] Xiong W, Xia C, Du J, Wang T, Zhao X, Peng Y, Wei Z and Li J 2017 Phys. Rev. B 95 245408
[18] Du J, Xia C, Xiong W, Wang T, Jia Y and Li J 2017 Nanoscale 9 17585
[19] Yang S, Li W, Ye C, Wang G, Tian H, Zhu C, He P, Ding G, Xie X, Liu Y, Lifshitz Y, Lee S, Kang Z and Jiang M 2017 Adv. Mater. 29 1605625
[20] Mahmood J, Lee E K, Jung M, Shin D, Choi H J, Seo J M, Jung S M, Kim D, Li F, Lah M S, Park N, Shin H J, Oh J H and Baek J B 2016 Proc. Natl. Acad. Sci. USA 113 7414
[21] Mortazavi B 2017 Carbon 118 25
[22] Bafekry A, Farjami Shayesteh S and Peeters F M 2019 J. Phys. Chem. C 123 12485
[23] Xu J T, Mahmood J, Dou Y H, Dou S X, Li F, Dai L M and Baek J B 2017 Adv. Mater. 29 1702007
[24] Makaremi M, Mortazavi B and Singh C V 2017 J. Phys. Chem. C. 121 18575
[25] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944
[26] Zhou X, Feng W, Guan S, Fu B, Su W and Yao Y 2017 J. Mater. Res. 32 2993
[27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[31] Ma X, Yin L, Zou J, Mi W and Wang X 2019 J. Phys. Chem. C 123 17440
[32] Luo N, Si C and Duan W 2017 Phys. Rev. B 95 205432
[33] Fuh H R, Chang C R, Wang Y K, Evans R F L, Chantrell R W and Jeng H T 2016 Sci. Rep. 6 32625
[34] Grimme S 2006 J. Comput. Chem. 27 1787
[35] Kerber T, Sierka M and Sauer J 2008 J. Comput. Chem. 29 2088
[36] Slassi A and Cornil J 2018 2D Mater. 6 015025
[37] Tagani M B 2018 Comput. Mater. Sci. 153 126
[38] Yang Y X and Wang Z G 2019 RSC Adv. 9 19837
[39] Xie L, Yang L, Ge W, Wang X and Jiang J 2019 Chem. Phys. 520 40
[40] Wang X, Li Q, Wang H, Gao Y, Hou J and Shao J 2018 Phys. B 537 314
[41] Gao X, Shen Y, Ma Y, Wu S and Zhou Z 2019 Appl. Surf. Sci. 479 1098
[42] Yan R, Fathipour S, Han Y, Song B, Xiao S, Li M, Ma N, Protasenko V, Muller D A, Jena D and Xing H G 2015 Nano Lett. 15 5791
[43] Zhang H, Li Y, Yang M, Zhang B, Yang G, Wang S and Wang K 2015 Chin. Phys. B 24 077501
[44] Kan M, Wang B, Lee Y H and Sun Q 2015 Nano Research 8 1348
[1] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[2] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[3] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[4] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[5] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[6] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[7] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[8] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[9] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[10] A novel two-dimensional SiO sheet with high-stability, strain tunable electronic structure, and excellent mechanical properties
Shijie Liu(刘世杰) and Hui Du(杜慧). Chin. Phys. B, 2021, 30(7): 076104.
[11] Band alignment between NiOx and nonpolar/semipolar GaN planes for selective-area-doped termination structure
Ji-Yao Du(都继瑶), Ji-Yu Zhou(周继禹), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Xin-Zhi Liu(刘新智), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2021, 30(6): 067701.
[12] Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study
Guoqing Wang(王国庆), Wenjing Qin(秦文静), and Jing Shi(石晶). Chin. Phys. B, 2021, 30(4): 046301.
[13] Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S. Chin. Phys. B, 2021, 30(4): 048202.
[14] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[15] Band alignment in SiC-based one-dimensional van der Waals homojunctions
Xing-Yi Tan(谭兴毅), Lin-Jie Ding(丁林杰), and Da-Hua Ren(任达华). Chin. Phys. B, 2021, 30(12): 126102.
[1] Fang Jian-Hui, Zhao Song-Qing. Noether's theorem of a rotational relativistic variable mass system[J]. Chin. Phys., 2002, 11(5): 445 -449 .
[2] Chen Chao, Wang Zhi-Wen. Inequalities of the electron density at the nucleus and radial expectation values of the ground state for the lithium isoelectronic sequence[J]. Chin. Phys., 2003, 12(6): 604 -609 .
[3] Zhang Bai-Gang, Yao Jian-Quan, Ding Xin, Wang Peng, Xu De-Gang, Zhang Fan, Zhang Hao, Yu Guo-Jun. Low-threshold, high-efficiency, high-repetition-rate optical parametric generator based on periodically poled LiNbO3[J]. Chin. Phys., 2004, 13(3): 364 -368 .
[4] Luo Shao-Kai, Cai Jian-Le, Jia Li-Qun. A new non-Noether conserved quantity of the relativistic holonomic nonconservative systems in general Lie transformations[J]. Chin. Phys., 2005, 14(4): 656 -659 .
[5] Cheng Qing-Hua, Cao Li, Xu Da-Hai, Wu Da-Jin. Time evolution of the intensity correlation function in a single-mode laser driven by both the coloured pump noise with signal modulation and the quantum noise with cross-correlation between the real and imaginary parts[J]. Chin. Phys., 2005, 14(6): 1159 -1167 .
[6] Pan Qi-Yuan, Jing Ji-Liang. Quasinormal modes of a stationary axisymmetric EMDA black hole[J]. Chin. Phys., 2006, 15(1): 77 -82 .
[7] Song Li-Jun, Li Lu, Zhou Guo-Sheng. Interactions of adjacent pulsating, erupting and creeping solitons[J]. Chin. Phys., 2007, 16(1): 148 -153 .
[8] Ding Bo-Jiang, Sakamoto Yoshiteru, Miura Yukitoshi. Modification to poloidal charge exchange recombination spectroscopy measurement in JT-60U tokamak[J]. Chin. Phys., 2007, 16(11): 3434 -3442 .
[9] Wang Fa-Qiang, Liu Chong-Xin. A new multi-scroll chaotic generator[J]. Chin. Phys., 2007, 16(4): 942 -945 .
[10] Wang Fa-Qiang, Liu Chong-Xin. Passive control of a 4-scroll chaotic system[J]. Chin. Phys., 2007, 16(4): 946 -950 .