Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096802    DOI: 10.1088/1674-1056/ac0ccf

C9N4 as excellent dual electrocatalyst: A first principles study

Wei Xu(许伟)1, WenWu Xu(许文武)1,2, and Xiangmei Duan(段香梅)1,2,†
1 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
2 Laboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo 315211, China
Abstract  We perform first principles calculations to investigate the catalytic behavior of C9N4 nanosheet for water splitting. For the pristine C9N4, we find that, at different hydrogen coverages, two H atoms adsorbed on the 12-membered ring and one H atom adsorbed on the 9-membered ring show excellent performance of hydrogen evolution reaction (HER). Tensile strain could improve the catalytic ability of C9N4 and strain can be practically introduced by building C9N4/BiN, and C9N4/GaAs heterojunctions. We demonstrate that the HER performance of heterojunctions is indeed improved compared with that of C9N4 nanosheet. Anchoring transition metal atoms on C9N4 is another strategy to apply strain. It shows that Rh@C9N4 exhibits superior HER property with very low Gibbs free energy change of -30 meV. Under tensile strain within ~2%, Rh@C9N4 could catalyze HER readily. Moreover, the catalyst Rh@C9N4 works well for oxygen evolution reaction (OER) with an overpotential of 0.58 V. Our results suggest that Rh@C9N4 is favorable for both HER and OER because of its metallic conductivity, close-zero Gibbs free energy change, and low oneset overpotential. The outstanding performance of C9N4 nanosheet could be attributed to the tunable porous structure and electronic structure compatibility.
Keywords:  C9N4 nanosheets      dual electrocatalyst      hydrogen evolution reaction      oxygen evolution reaction  
Received:  09 June 2021      Revised:  09 June 2021      Accepted manuscript online:  21 June 2021
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  81.05.Rm (Porous materials; granular materials)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  87.16.D- (Membranes, bilayers, and vesicles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574167 and 11874033) and the K C Wong Magna Foundation in Ningbo University.
Corresponding Authors:  Xiangmei Duan     E-mail:

Cite this article: 

Wei Xu(许伟), WenWu Xu(许文武), and Xiangmei Duan(段香梅) C9N4 as excellent dual electrocatalyst: A first principles study 2021 Chin. Phys. B 30 096802

[1] Dresselhaus M S and Thomas I L 2001 Nature 414 332
[2] Balat M 2008 Int. J. Hydrogne Energ. 33 4013
[3] Mccrory C C L, Jung S, Ferrer I M, Chatman S, Peters J C and Jaramillo T F 2015 J. Am. Chem. Soc. 137 4347
[4] Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S and Stimming U 2005 J. Electrochem. Soc. 152 J23
[5] Lee Y, Suntivich J, May K J, Perry E E and Shaohorn Y 2012 J. Phys. Chem. Lett. 3 399
[6] Liu X and Dai L 2016 Nat. Rev. Mater. 1 16064
[7] Zhang X, Chen A, Zhang Z H, Jiao M G and Zhou Z 2018 J. Mater. Chem. A 6 11446
[8] Tang L, Meng X, Deng D and Bao X 2019 Adv. Mater. 31 1901996
[9] Fei H, Dong J, Feng Y, Allen C S, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y and Sun H 2018 Nat. Catal. 1 63
[10] Zheng Y, Jiao Y, Zhu Y H, Li L H, Han Y, Chen Y, Du A J, Jaroniec M and Qiao S Z 2014 Nat. Commun. 5 3783
[11] Mortazavi B, Shahrokhi M, Shapeev A V, Rabczuk T and Zhuang X 2019 J. Mater. Chem. C 7 10908
[12] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[13] Kresse G and Joubert D P 1999 Phys. Rev. B 59 1758
[14] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[15] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[16] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[17] Henkelman G, Arnaldsson A and Jonsson H 2006 Comp. Mater. Sci. 36 354
[18] Greeley J, Jaramillo T F, Bonde J, Chorkendorff I and Norskov J K 2006 Nat. Mater. 5 909
[19] Greeley J, Norskov J K, Kibler L A, Elaziz A M and Kolb D M 2006 ChemPhysChem 7 1032
[20] Yu S, Rao Y, Wu H and Duan X 2018 Phys. Chem. Chem. Phys. 20 27970
[21] Gao D, Xia B, Wang Y, Xiao W, Xi P, Xue D and Ding J 2018 Small 14 1704150
[22] Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T and Jónsson H 2004 J. Phys. Chem. B 108 17886
[23] Man I C, Su H, Callevallejo F, Hansen H A, Martinez J I, Inoglu N, Kitchin J R, Jaramillo T F, Norskov J K and Rossmeisl J 2011 ChemCatchem 3 1159
[24] Gao G, Sun Q and Du A 2016 J. Phys. Chem. C 120 16761
[25] Gao G, Jiao Y, Ma F, Jiao Y, Waclawik E R and Du A 2015 J. Catal. 332 149
[26] Geng S, Yang W and Yu Y S 2019 J. Catal. 375 441
[27] Tang Y, Liu M, Zhou Y, Ren C, Zhong X and Wang J 2020 J. Alloys Compd. 842 155901
[28] Zhou W, Zhang S, Guo S, Wang Y, Lu J, Ming X, Li Z, Qu H and Zeng H 2020 Phys. Rev. Appl. 13 044066
[29] Zhuang H L, Singh A K and Hennig R G 2013 Phys. Rev. B 87 165415
[30] Zhou Y, Gao G, Kang J, Chu W and Wang L 2019 Nanoscale 11 18169
[31] Rao Y C, Peng Z, Li S F, Duan X M and Wei S H 2018 Phys. Chem. Chem. Phys. 20 12916
[32] Huang J, Zhou C, Chu Z, Liu X and Duan X 2021 Phys. Chem. Chem. Phys. 23 1868
[33] Changhyeok C, Seoin B, Na-Young K, Juhyung L, Yong-Hyun K and Yousung J 2018 ACS Catal. 8 7517
[34] Zhu Y D, Zhao K, Shi J L, Ren X Y, Zhao X J, Shang Y, Xue X L, Guo H Z, Duan X M, He H, Guo Z X and Li S F 2019 ACS. Appl. Mater. Inter. 11 32887
[35] Norskov J K 1991 Prog. Surf. Sci. 38 103
[36] Li Z, Yao Y, Wang T, Lu K, Zhang P, Zhang W and Yin J 2019 Appl. Surf. Sci. 496 143730
[37] Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
[38] Ma Y, Dai Y, Guo M, Niu C, Yu L and Huang B 2011 Appl. Surf. Sci. 257 7845
[39] Cui X, Ren P, Deng D, Deng J and Bao X 2016 Energ. Environ. Sci. 9 123
[40] Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martinez J I, Inoglu N G and Rossmeisl J 2011 ChemCatchem 3 1159
[41] Zhang T, Zhang B, Peng Q, Zhou J and Sun Z 2021 J. Mater. Chem. A 9 433
[42] Wang J R, Fan Y C, Qi S Y, Li W F and Zhao M W 2020 J. Phys. Chem. C 124 9350
[1] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
[2] Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide
Tao Huang(黄韬), Yuan Si(思源), Hong-Yu Wu(吴宏宇), Li-Xin Xia(夏立新), Yu Lan(蓝郁), Wei-Qing Huang(黄维清), Wang-Yu Hu(胡望宇), and Gui-Fang Huang(黄桂芳). Chin. Phys. B, 2021, 30(2): 027101.
[3] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis
Zhe Wang(王喆) and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(11): 116401.
[4] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[5] In situ growth of different numbers of gold nanoparticles on MoS2 with enhanced electrocatalytic activity for hydrogen evolution reaction
Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Chen Fu(付晨). Chin. Phys. B, 2018, 27(6): 068103.
[6] Understanding oxygen reactions in aprotic Li-O2 batteries
Shunchao Ma(马顺超), Yelong Zhang(张业龙), Qinghua Cui(崔清华), Jing Zhao(赵婧), Zhangquan Peng(彭章泉). Chin. Phys. B, 2016, 25(1): 018204.
[1] Li Zhen-ya, Wu Yin-zhong. EFFECTS OF LONG-RANGE INTERACTIONS ON THE FERROELECTRIC FILM[J]. Chin. Phys., 2001, 10(11): 1058 -1061 .
[2] Wang Jun, Liu Yi, Dong Bao-zhong, Li Zhi-hong, Gong Yan-jun, Zhang Ye, Wu Dong, Sun Yu-han. STUDY OF MESOPOROUS SILICA MATERIALS BY SMALL ANGLE X-RAY SCATTERING[J]. Chin. Phys., 2001, 10(5): 429 -432 .
[3] Sheng Yong, Wang Rong, Jiang Gang, Zhu Zheng-he. CALCULATION OF THE FINE STRUCTURE OF OXYGEN-LIKE IONS USING THE POLARIZATION POTENTIAL FUNCTION[J]. Chin. Phys., 2001, 10(6): 505 -511 .
[4] Dai Shuo, Guo Yun-Jun. Mirror nodes in growing random networks[J]. Chin. Phys., 2004, 13(4): 423 -427 .
[5] Gong Tian-Xi, Li Ai-Gen, Wang Yong-Jiu. Gravitational effect of centre mass with electric charge and a large number of magnetic monopoles[J]. Chin. Phys., 2005, 14(4): 859 -862 .
[6] Liu Guo-Zhi, Huang Wen-Hua, Shao Hao, Xiao Ren-Zhen. Effect of longitudinal applied magnetic field on the self-pinched critical current in intense electron beam diode[J]. Chin. Phys., 2006, 15(3): 600 -603 .
[7] Zhang Ming-Jian, Lang Pei-Lin, Peng Zhi-Hui, Chen Ying-Fei, Chen Ke, Zheng Dong-Ning. High-Tc planar SQUID gradiometer for eddy current non-destructive evaluation[J]. Chin. Phys., 2006, 15(8): 1903 -1908 .
[8] Li Yuan, Zeng Gui-Hua. A (2, 3) quantum threshold scheme based on Greenberger--Horne--Zeilinger state[J]. Chin. Phys., 2007, 16(10): 2875 -2879 .
[9] Zhong Fei, Li Xin-Hua, Qiu Kai, Yin Zhi-Jun, Ji Chang-Jian, Cao Xian-Cun, Han Qi-Feng, Chen Jia-Rong, Wang Yu-Qi. GaN layers with different polarities prepared by radio frequency molecular beam epitaxy and characterized by Raman scattering[J]. Chin. Phys., 2007, 16(9): 2786 -2790 .
[10] Zhang Jing-Xiang, Li Hui, Song Xi-Gui, Zhang Jie. Inverse Monte Carlo study on effective interaction potential of Ag--Rh alloy from pair correlation functions[J]. Chin. Phys. B, 2009, 18(12): 5259 -5266 .