Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024209    DOI: 10.1088/1674-1056/ac0ba9
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Non-Rayleigh photon statistics of superbunching pseudothermal light

Chao-Qi Wei(卫超奇)1, Jian-Bin Liu(刘建彬)1,2,†, Xue-Xing Zhang(张学星)1, Rui Zhuang(庄睿)1, Yu Zhou(周宇)3, Hui Chen(陈辉)1, Yu-Chen He(贺雨晨)1, Huai-Bin Zheng(郑淮斌)1, and Zhuo Xu(徐卓)1
1 Key Laboratory of Multifunctional Materials and Structures, Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
2 The Key Laboratory of Weak Light Nonlinear Photonics(Ministry of Education), Nankai University, Tianjin 300457, China;
3 MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Superbunching pseudothermal light has important applications in studying the second- and higher-order interference of light in quantum optics. Unlike the photon statistics of thermal or pseudothermal light is well understood, the photon statistics of superbunching pseudothermal light has not been studied yet. In this paper, we will employ single-photon detectors to measure the photon statistics of superbunching pseudothermal light and calculate the degree of second-order coherence. It is found that the larger the value of the degree of second-order coherence of superbunching pseudothermal light is, the more the measured photon distribution deviates from the one of thermal or pseudothermal light in the tail part. The results are helpful to understand the physics of two-photon superbunching with classical light. It is suggested that superbunching pseudothermal light can be employed to generate non-Rayleigh temporal speckles.
Keywords:  superbunching pseudothermal light      photon statistics      two-photon interference  
Received:  12 May 2021      Revised:  11 June 2021      Accepted manuscript online:  16 June 2021
PACS:  42.50.Ar  
  42.25.Kb (Coherence)  
Fund: Project supported by the Shanxi Key Research and Development Project, China (Grant No. 2019ZDLGY09-08), Shanxi Nature and Science Basic Research Project, China (Grant No. 2019JLP-18), Open fund of MOE Key Laboratory of Weak-Light Nonlinear Photonics (Grant No. OS19-2).
Corresponding Authors:  Jian-Bin Liu     E-mail:  liujianbin@xjtu.edu.cn

Cite this article: 

Chao-Qi Wei(卫超奇), Jian-Bin Liu(刘建彬), Xue-Xing Zhang(张学星), Rui Zhuang(庄睿), Yu Zhou(周宇), Hui Chen(陈辉), Yu-Chen He(贺雨晨), Huai-Bin Zheng(郑淮斌), and Zhuo Xu(徐卓) Non-Rayleigh photon statistics of superbunching pseudothermal light 2022 Chin. Phys. B 31 024209

[1] Glauber R J 2006 Rev. Mod. Phys. 78 1267
[2] Hanbury Brown R and Twiss R Q 1956 Nature 177 27
[3] Hanbury Brown R and Twiss R Q 1956 Nature 178 1046
[4] Hanbury Brown R 1974 The Intensity Interferometer:its Application to Astronomy (Loudon:Taylor and Francis Ltd.)
[5] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (New York:Cambridge University Press)
[6] Martienssen W and Spiller E 1964 Am. J. Phys. 32 919
[7] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
[8] Valencia A, Scarcelli G, D'Angelo M and Shih Y H 2005 Phys. Rev. Lett. 94 063601
[9] Chan K W C, O'Sullivan M N and Boyd R W 2009 Opt. Lett. 34 3343
[10] Gong W L and Han S S 2015 Sci. Rep. 5 9280
[11] Xiong J, Cao D Z, Huang F, Li H G, Sun X J and Wang K G 2005 Phys. Rev. Lett. 94 173601
[12] Zhai Y H, Chen X H and Wu L A 2006 Phys. Rev. A 74 053807
[13] Bromberg Y, Lahini Y, Small E and Silberberg Y 2010 Nature Photon. 4 721
[14] Smith T A and Shih Y H 2018 Phys. Rev. Lett. 120 063606
[15] Peng T, Chen H, Shih Y H and Scully M O 2014 Phys. Rev. Lett. 112 180401
[16] Zhou Y, Li F L, Bai B, Chen H, Liu J B, Xu Z and Zheng H B 2017 Phys. Rev. A 95 053809
[17] Zhou Y, Zhang X X, Wang Z P, Zhang F Y, Chen H, Zheng H B, Liu J B, F L Li and Xu Z 2019 Opt. Commun. 437 330
[18] Liu J B, Zhuang R, Zhang X X, Wei C Q, Zheng H B, Zhou Y, Chen H, He Y C and Xu Z 2021 arXiv 2103.09981
[19] Loudon R 2000 The Quantum Theory of Light (3rd ed.) (New York:Oxford University Press)
[20] Goodman J W 2007 Speckle Phenomena in Optics:Theory and Applications (CO:Ben Roberts & Company)
[21] Bromberg Y and Cao H 2014 Phys. Rev. Lett. 112 213904
[22] Hsu C W, Liew S F, Goetschy A, Cao H and Stone A D 2017 Nature Phys. 13 497
[23] Bender N, Yilmaz H, Bromberg Y and Cao H 2018 Optica 5 595
[24] Zhang L, Lu Y P, Zhou D X, Zhang H Z, Li L M and Zhang G Q 2019 Phys. Rev. A 99 063827
[25] Safari A, Fickler R, Padgett M J and Boyd R W 2017 Phys. Rev. Lett. 119 203901
[26] Straka I, Mika J and Jĕzek M 2018 Opt. Express 26 8998
[27] Ou Z Y 2007 Multi-Photon Quantum Interference (New York:Springer Science+Business Media)
[28] Liu J B, Wang J J, Chen H, Zheng H B, Liu Y Y, Zhou Y, Li F L and Xu Z 2018 Opt. Commun. 410 824
[29] Zhou Y, Luo S, Tang Z G, Zheng H B, Chen H, Liu J B, Li F L and Xu Z 2019 J. Opt. Soc. Am. B 36 96
[30] Klyshko D N, Penin A N and Polkovniko B F 1970 JETP Lett. 11 5
[31] Burnham D C and Weinberg D L 1970 Phys. Rev. Lett. 25 84
[32] Glauber R J 1963 Phys. Rev. 130 2529
[33] Glauber R J 1963 Phys. Rev. 131 2766
[34] Sudarshan E C G 1963 Phys. Rev. Lett. 10 277
[35] Mandel L 1963 Progress in Optics Vol. 2 edited by Wolf E, p. 181
[36] Li S W, Li F, Peng T and Agarwal G S 2020 Phys. Rev. A 101 063806
[37] Shih Y H 2011 An Introduction to Quantum Optics (FL:Taylor and Francis Group, LLC)
[1] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[2] Second-order interference of two independent photons with different spectra
Yu Zhou(周宇), Jian-Bin Liu(刘建彬), Huai-Bin Zheng(郑淮斌), Hui Chen(陈辉), Fu-Li Li(李福利), Zhuo Xu(徐卓). Chin. Phys. B, 2019, 28(10): 104205.
[3] A new two-mode thermo-and squeezing-mixed optical field
Jun Zhou(周军), Hong-yi Fan(范洪义), Jun Song(宋军). Chin. Phys. B, 2017, 26(7): 070301.
[4] Second-order temporal interference of two independent light beams at an asymmetrical beam splitter
Jianbin Liu(刘建彬), Jingjing Wang(王婧婧), Zhuo Xu(徐卓). Chin. Phys. B, 2017, 26(1): 014201.
[5] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[6] Second-order interference of two independent and tunable single-mode continuous-wave lasers
Jianbin Liu(刘建彬) Dong Wei(卫栋), Hui Chen(陈辉), Yu Zhou(周宇), Huaibin Zheng(郑淮斌), Hong Gao(高宏), Fu-Li Li(李福利), Zhuo Xu(徐卓). Chin. Phys. B, 2016, 25(3): 034203.
[7] Photon pair source via two coupling single quantum emitters
Peng Yong-Gang (彭勇刚), Zheng Yu-Jun (郑雨军). Chin. Phys. B, 2015, 24(10): 104206.
[8] Photon counting statistics in single multi-level quantum system
Wang Dong-Sheng(王东升) and Zheng Yu-Jun(郑雨军). Chin. Phys. B, 2010, 19(8): 083202.
[9] Entanglement and photon statistics of output fields from beam splitter for binomial state inputs
Zhou Qing-Ping (周清平), Fang Mao-Fa (方卯发). Chin. Phys. B, 2004, 13(9): 1477-1486.
[10] Transparency induced by two-photon interference in a beam splitter
Wang Kai-Ge (汪凯戈), Yang Guo-Jian (杨国健). Chin. Phys. B, 2004, 13(5): 686-691.
[11] Photon statistics of the micromaser with a Kerr medium
Wu Shu-Dong (吴曙东), Zhan Zhi-Ming (詹志明), Jin Li-Xia (金丽霞). Chin. Phys. B, 2002, 11(12): 1272-1275.
No Suggested Reading articles found!