Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 083103    DOI: 10.1088/1674-1056/ac0a6a

Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)

Guijiang Li(李贵江)1,†, Enke Liu(刘恩克)2,3, Guodong Liu(刘国栋)4, Wenhong Wang(王文洪)2,3, and Guangheng Wu(吴光恒)2
1 College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China;
2 State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
Abstract  The lattice dynamics, elastic properties and the origin of vanished magnetism in equiatomic quaternary Heusler compounds CoMnVZ (Z=Al, Ga) are investigated by first principle calculations in this work. Due to the similar constituent atoms in CoMnVAl and CoMnVGa compounds, they are both stable in LiMgPdSn-type structure with comparable lattice size, phonon dispersions and electronic structures. Comparatively, we find that CoMnVAl is more structurally stable than CoMnVGa. Meanwhile, the increased covalent bonding component in CoMnVAl enhances its mechanical strength and Vickers hardness, which leads to better comprehensive mechanical properties than those of CoMnVGa. Practically and importantly, structural and chemical compatibilities at the interface make non-magnetic semiconductor CoMnVAl and magnetic topological semimetals Co2MnAl/Ga more suitable to be grown in heterostructures. Owing to atomic preferential occupation in CoMnVAl/Ga, the localized atoms Mn occupy C (0.5, 0.5, 0.5) Wyckoff site rather than B (0.25, 0.25, 0.25) and D (0.75, 0.75, 0.75) Wyckoff sites in LiMgPdSn-type structure, which results in symmetric band filling and consequently drives them to be non-magnetic. Correspondingly, by tuning localized atoms Mn to occupy B (0.25, 0.25, 0.25) or/and D (0.75, 0.75, 0.75) Wyckoff sites in off-stoichiometric Co-Mn-V-Al/Ga compounds and keeping the total valence electrons as 24, newly compensated ferrimagnetic compounds are theoretically achieved. We hope that our work will provide more choices for spintronic applications.
Keywords:  Heusler compounds CoMnVAl/Ga      first principles calculations      lattice dynamics      elastic properties      nonmagnetic semiconductor  
Received:  20 May 2021      Revised:  08 June 2021      Accepted manuscript online:  11 June 2021
PACS:  31.15.A- (Ab initio calculations)  
  75.20.Hr (Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)  
  62.20.-x (Mechanical properties of solids) (First-principles theory)  
Fund: Project supported by Special Fund for Introduced Talent to Initiate Scientific Research in Nanjing Tech University and the National Natural Science Foundation of China (Grant Nos. 51831003 and 51771225).
Corresponding Authors:  Guijiang Li     E-mail:

Cite this article: 

Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒) Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga) 2021 Chin. Phys. B 30 083103

[1] Webster P J, Ziebeck K R A, Town S L and Peak M S 1984 Philos. Mag. B 49 295
[2] Wei Z Y, Liu E K, Chen J H, Li Y, Liu G D, Luo H Z, Xi X K, Zhang H W, Wang W H and Wu G H 2015 Appl. Phys. Lett. 107 022406
[3] Li Y, Xu P, Zhang X M, Liu G D, Liu E K and Li L W 2020 Chin. Phys. B 29 087101
[4] Xu G Z, Liu E K, Du Y, Li G J, Liu G D, Wang W H and Wu G H 2013 Europhys. Lett. 102 17007
[5] de Groot R A, Mueller F M, Engen P G v and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[6] Chadov S, Wu S C, Felser C and Galanakis I 2017 Phys. Rev. B 96 5
[7] Kübler J and Felser C 2016 Europhys. Lett. 114 47005
[8] Chang G, Xu S Y, Zhou X, Huang S M, Singh B, Wang B, Belopolski I, Yin J, Zhang S, Bansil A, Lin H and Hasan M Z 2017 Phys. Rev. Lett. 119 156401
[9] Li P G, Koo J, Ning W, Li J G, Miao L X, Min L J, Zhu Y L, Wang Y, Alem N, Liu C X, Mao Z Q and Yan B H 2020 Nat. Commun. 11 8
[10] Sakai A, Mizuta Y P, Nugroho A A, Sihombing R, Koretsune T, Suzuki M-T, Takemori N, Ishii R, Nishio-Hamane D, Arita R, Goswami P and Nakatsuji S 2018 Nat. Phys. 14 1119
[11] Zou J, He Z and Xu G 2019 npj Comput. Mater. 5 96
[12] Galanakis I, Mavropoulos P and Dederichs P H 2006 J. Phys. D:Appl. Phys. 39 765
[13] Chadov S, Graf T, Chadova K, Dai X, Casper F, Fecher G H and Felser C 2011 Phys. Rev. Lett. 107 047202
[14] Pauling L 1938 Phys. Rev. 54 899
[15] Slater J C 1936 Phys. Rev. 49 931
[16] Di Marco I, Held A, Keshavarz S, Kvashnin Y O and Chioncel L 2018 Phys. Rev. B 97 035105
[17] Stinshoff R, Nayak A K, Fecher G H, Balke B, Ouardi S, Skourski Y, Nakamura T and Felser C 2017 Phys. Rev. B 95 060410
[18] Sabine W, Hem C K, Gerhard H F and Claudia F 2006 J. Phys.:Condens. Matter 18 6171
[19] Vitos L, Abrikosov I A and Johansson B 2001 Phys. Rev. Lett. 87 156401
[20] Vitos L, Skriver H L, Johansson B and Kollár J 2000 Comput. Mater. Sci. 18 24
[21] Vitos L 2001 Phys. Rev. B 64 014107
[22] Cong D Y, Xiong W X, Planes A, Ren Y, Manosa L, Cao P Y, Nie Z H, Sun X M, Yang Z, Hong X F and Wang Y D 2019 Phys. Rev. Lett. 122 255703
[23] Dong Z, Li W, Schonecker S, Jiang B and Vitos L 2021 Proc. Natl. Acad. Sci. USA 118 e2023181118
[24] Huang S, Huang H, Li W, Kim D, Lu S, Li X Q, Holmstrom E, Kwon S K and Vitos L 2018 Nat. Commun. 9 7
[25] Chen H Y, Wang Y D, Nie Z H, Li R G, Cong D Y, Liu W J, Ye F, Liu Y Z, Cao P Y, Tian F Y, Shen X, Yu R H, Vitos L, Zhang M H, Li S L, Zhang X Y, Zheng H, Mitchell J F and Ren Y 2020 Nat. Mater. 19 712
[26] Vitos L 2007 Computational Quantum Mechanics for Materials Engineers (London:Springer-Verlag) p. 101
[27] Vanderbilt D 1990 Phys. Rev. B 41 7892
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Bainsla L and Suresh K G 2016 Appl. Phys. Rev. 3 031101
[30] Burch T J, Litrenta T and Budnick J I 1974 Phys. Rev. Lett. 33 421
[31] Basit L, Fecher G H, Chadov S, Balke B and Felser C 2011 Eur. J. Inorg. Chem. 2011 3950
[32] Özdoǧan K, Saşıoǧlu E and Galanakis I 2013 J. Appl. Phys. 113 193903
[33] Tas M, Saşıoǧlu E, Galanakis I, Friedrich C and Blügel S 2016 Phys. Rev. B 93 195155
[34] Li G J, Liu E K, Zhang H G, Zhang Y J, Xu G Z, Luo H Z, Zhang H W, Wang W H and Wu G H 2013 Appl. Phys. Lett. 102 062407
[35] Li G J, Liu E K, Zhang H G, Qian J F, Zhang H W, Chen J L, Wang W H and Wu G H 2012 Appl. Phys. Lett. 101 102402
[36] Li Q F, Zhao H F, Zhong X and Su J L 2012 J. Magn. Magn. Mater 324 1463
[37] Sun Z, Ahuja R, Li S and Schneider J M 2003 Appl. Phys. Lett. 83 899
[38] Khandy S A, Islam I, Gupta D C, Khenata R and Laref A 2019 Sci. Rep. 9 1475
[39] Wang L Y, Dai X F, Wang X T, Cui Y T, Liu E K, Wang W H, Wu G H and Liu G D 2015 Mater. Res. Express 2 106101
[40] Deka B, Srinivasan A, Singh R K, Varaprasad B, Takahashi Y K and Hono K 2016 J. Alloys Compd. 662 510
[41] Meinert M, Schmalhorst J M, Reiss G and Arenholz E 2011 J. Phys. D. Appl. Phys. 44 215003
[42] Ramesh Kumar K, Arout Chelvane J, Markandeyulu G, Malik S K and Harish Kumar N 2010 Solid State Commun. 150 70
[43] Fu C L and Ho K M 1983 Phys. Rev. B 28 5480
[44] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[45] Nishino Y, Kato M, Asano S, Soda K, Hayasaki M and Mizutani U 1997 Phys. Rev. Lett. 79 1909
[46] Born M and K. Huang 1955 Dynamical Theory of Crystal Lattices (Oxford:Oxford University Press) p. 38
[47] Grimvall G 1999 Thermophysical Properties of Materials (Amsterdam:Elsevier Science B.V.) p. 28
[48] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[49] Zener C 1948 Elasticity and Anelasticity of Metals (Chicago:University of Chicago) p. 21
[50] Shapiro S M, Xu G, Gu G, Gardner J and Fonda R W 2006 Phys. Rev. B 73 214114
[51] Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
[52] Reuss A 1929 Z. Ang. Math. Mech. 9 49
[53] Voigt W 1889 Ann. Phys. 274 573
[54] Pugh S F 1954 Phil. Mag. 45 823
[55] Frantsevich I N,Voronov F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev:Naukova Dumka)
[56] Wu S C, Fecher G H, Naghavi S S and Felser C 2019 J. Appl. Phys. 125 082523
[57] Tian Y, Xu B and Zhao Z 2012 Int. J. Refractory Metals Hard Mater. 33 93
[58] Candan A 2019 J. Elect. Mat. 48 7608
[59] Huang Z W, Zhao Y H, Hou H and Han P D 2012 Physica B 407 1075
[60] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[61] Fine M E, Brown L D and Marcus H L 1984 Scr. Metallurgica 18 951
[62] Pettifor D G 1992 Mater. Sci. Tech. 8 345
[63] Bader R F W 1990 Atoms in Molecules-A Quantum Theory (Oxford:Oxford University Press)
[64] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[65] Vandeperre L J, Giuliani F, Lloyd S J and Clegg W J 2007 Acta Mater. 55 6307
[66] Nielsen O H and Martin R M 1985 Phys. Rev. B 32 3792
[67] Yousuf S and Gupta D C 2018 J. Alloys Compd. 735 1245
[68] Li G J Design schem and realization of fully compensated ferrimagnetic half metal in off-stoichiometric Co-Mn-V-Ga/Al Heusler compounds Submitted to Phys. Rev. B
[1] Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study
Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜). Chin. Phys. B, 2021, 30(5): 056501.
[2] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[3] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[4] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[5] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[6] tP40 carbon: A novel superhard carbon allotrope
Heng Liu(刘恒), Qing-Yang Fan(樊庆扬)†, Fang Yang(杨放), Xin-Hai Yu(于新海), Wei Zhang(张伟), and Si-Ning Yun(云斯宁)‡. Chin. Phys. B, 2020, 29(10): 106102.
[7] Surperhard monoclinic BC6N allotropes: First-principles investigations
Nian-Rui Qu(屈年瑞), Hong-Chao Wang(王洪超), Qing Li(李青), Yi-Ding Li(李一鼎), Zhi-Ping Li(李志平), Hui-Yang Gou(缑慧阳), Fa-Ming Gao(高发明). Chin. Phys. B, 2019, 28(9): 096201.
[8] Structural, elastic, and electronic properties of topological semimetal WC-type MX family by first-principles calculation
Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2019, 28(7): 077105.
[9] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[10] Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(5): 056301.
[11] First-principles study of structural, mechanical, and electronic properties of W alloying with Zr
Ning-Ning Zhang(张宁宁), Yu-Juan Zhang(张玉娟), Yu Yang(杨宇), Ping Zhang(张平), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(4): 046301.
[12] Orientation dependence of elastic properties in orthorhombic Ca3Mn2O7
Gang Jian(简刚), Mei-Rui Liu(刘美瑞), Chen Zhang(张晨), Jie Lu(卢杰), Chao Yan(晏超). Chin. Phys. B, 2019, 28(2): 026201.
[13] Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study
Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟). Chin. Phys. B, 2019, 28(10): 103102.
[14] Ultrafast electron diffraction
Xuan Wang(王瑄), Yutong Li(李玉同). Chin. Phys. B, 2018, 27(7): 076102.
[15] The effects of combining alloying elements on the elastic properties of γ-Ni in Ni-based superalloy: High-throughput first-principles calculations
Baokun Lu(路宝坤), Chongyu Wang(王崇愚). Chin. Phys. B, 2018, 27(7): 077104.
[2] Hou Jun-da, Zhang Tao, Tang Bao-yin, P. K. Chu, I. G. Brown. GUIDING OF PLASMA BY ELECTRIC FIELD AND MAGNETIC FIELD[J]. Chin. Phys., 2001, 10(5): 424 -428 .
[3] Zhou Da-Yong, Lan Qing, Kong Yun-Chuan, Miao Zhen-Hua, Feng Song-Lin, Niu Zhi-Chuan. Atomic hydrogen induced step bunching and fabrication of quantum wire arrays on GaAs (311)A substrate by molecular beam epitaxy[J]. Chin. Phys., 2003, 12(2): 218 -221 .
[4] Su Guo-Lin, Ren Xue-Guang, Zhang Shu-Feng, Ning Chuan-Gang, Zhou Hui, Li Bin, Li Gui-Qin, Deng Jing-Kang. Experimental and calculated momentum densities for the complete valence orbitals of the antimicrobial agent diacetyl[J]. Chin. Phys., 2005, 14(10): 1966 -1973 .
[5] Wang Gang, Liang Xin-Gang. Development and evolution of flow over three-dimensional cylinder[J]. Chin. Phys., 2005, 14(7): 1392 -1397 .
[6] Zhang Jian-Min, Xu Ke-Wei. Evaluation of multiaxial stress in textured cubic films by x-ray diffraction[J]. Chin. Phys., 2005, 14(9): 1866 -1872 .
[7] Cai Da-Feng, Gu Yu-Qiu, Zheng Zhi-Jian, Zhou Wei-Min, Jiao Chun-Ye, Chen Hao, Wen Tian-Shu, Chunyu Shu-Tai. Effects of atomic number Z on the energy distribution of hot electrons generated by femtosecond laser interaction with metallic targets[J]. Chin. Phys., 2006, 15(10): 2363 -2367 .
[8] Xu Wen-Cheng, Gao Jie-Li, Liang Zhan-Qiang, Chen Qiao-Hong, Liu Song-Hao. Supercontinuum spectra generation in the single-mode optical fibre with concave dispersion profile[J]. Chin. Phys., 2006, 15(4): 715 -720 .
[9] Yu Jie, Wang Sen-Ming, Yuan Kai-Jun, Cong Shu-Lin. Photoionization of NaK molecule with a double-well potential in femtosecond pump--probe pulse laser fields[J]. Chin. Phys., 2006, 15(9): 1996 -2001 .
[10] Dai Chang-Jian, Li Shi-Ben. Saturation effects on Ba 6pnl (l=0,2) and 6pnk (|M|=0,1) autoionization spectra[J]. Chin. Phys., 2007, 16(2): 382 -391 .