Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 086103    DOI: 10.1088/1674-1056/ac0a64
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Microstructure evolution of T91 steel after heavy ion irradiation at 550 ℃

Ligang Song(宋力刚)1, Bo Huang(黄波)1, Jianghua Li(李江华)2, Xianfeng Ma(马显锋)1,†, Yang Li(李阳)3,4,‡, Zehua Fang(方泽华)1, Min Liu(刘敏)1, Jishen Jiang(蒋季伸)1, and Yanying Hu(胡琰莹)1
1 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China;
2 State Key Laboratory of Nonlinear Mechanics(LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
3 DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, Gif-sur-Yvette 91191, France;
4 Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
Abstract  Fe-Cr ferritic/martensitic (F/M) steels have been proposed as one of the candidate materials for the Generation IV nuclear technologies. In this study, a widely-used ferritic/martensitic steel, T91 steel, was irradiated by 196-MeV Kr+ ions at 550 ℃. To reveal the irradiation mechanism, the microstructure evolution of irradiated T91 steel was studied in details by transmission electron microscope (TEM). With increasing dose, the defects gradually changed from black dots to dislocation loops, and further to form dislocation walls near grain boundaries due to the production of a large number of dislocations. When many dislocation loops of primary a0/2<111> type with high migration interacted with other defects or carbon atoms, it led to the production of dislocation segments and other dislocation loops of a0<100> type. Lots of defects accumulated near grain boundaries in the irradiated area, especially in the high-dose area. The grain boundaries of martensite laths acted as important sinks of irradiation defects in T91. Elevated temperature facilitated the migration of defects, leading to the accumulation of defects near the grain boundaries of martensite laths.
Keywords:  T91 steel      high energy Kr ions irradiation      irradiation defects      transmission electron microscope (TEM)  
Received:  30 March 2021      Revised:  05 June 2021      Accepted manuscript online:  11 June 2021
PACS:  61.82.-d (Radiation effects on specific materials)  
  61.72.U- (Doping and impurity implantation)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  07.78.+s (Electron, positron, and ion microscopes; electron diffractometers)  
Fund: Project supported by Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2019B030302011), the National Natural Science Foundation of China (Grant Nos. U2032143, 11902370, and 52005523), the International Science and Technology Cooperation Program of Guangdong Province, China (Grant No. 2019A050510022), the China Postdoctoral Science Foundation (Grant Nos. 2019M653173 and 2019TQ0374), and the Heavy Ion Research Facility of Lanzhou (HIRFL).
Corresponding Authors:  Xianfeng Ma, Yang Li     E-mail:;

Cite this article: 

Ligang Song(宋力刚), Bo Huang(黄波), Jianghua Li(李江华), Xianfeng Ma(马显锋), Yang Li(李阳), Zehua Fang(方泽华), Min Liu(刘敏), Jishen Jiang(蒋季伸), and Yanying Hu(胡琰莹) Microstructure evolution of T91 steel after heavy ion irradiation at 550 ℃ 2021 Chin. Phys. B 30 086103

[1] Prasitthipayong A, Frazer D, Kareer A, Abad M D, Garner A, Joni B, Ungar T, Ribarik G, Preuss M, Balogh L, Tumey S J, Minor A M and Hosemann P 2018 Nuclear Materials and Energy 16 34
[2] Zeman A, Debarberis L, Kocik J, Slugen V and Keilova E 2007 J. Nucl. Mater. 362 259
[3] Horowitz E 2008 Icone 16: Proceeding of the 16$th International Conference on Nuclear Engineering 4 405
[4] Hahner P and Hurst R 2009 Creep & Fracture in High Temperature Components: Design & Life Assessment Issues, Proceedings 112
[5] Taller S and Was G S 2020 Acta Materialia 198 47
[6] Gigax J G, Kim H, Chen T Y, Garner F A and Shao L 2017 Acta Materialia 132 395
[7] Gigax J G, Chen T, Kim H, Wang J, Price L M, Aydogan E, Maloy S A, Schreiber D K, Toloczko M B, Garner F A and Shao L 2016 J. Nucl. Mater. 482 257
[8] Getto E, Sun K, Monterrosa A M, Jiao Z, Hackett M J and Was G S 2016 J. Nucl. Mater. 480 159
[9] Li B S, Wang Z G, Wei K F, Shen T L, Yao C F, Zhang H P, Sheng Y B, Lu X R, Xiong A L and Han W T 2019 Fusion Engineering and Design 142 6
[10] Xu C and Was G S 2013 J. Nucl. Mater. 441 681
[11] Yeli G M, Strutt V C I, Auger M A, Bagot P A J and Moody M P 2021 J. Nucl. Mater. 543
[12] Van Renterghem W, Terentyev D and Konstantinovic M J 2018 J. Nucl. Mater. 506 43
[13] Jiao Z, Taller S, Field K, Yeli G, Moody M P and Was G S 2018 J. Nucl. Mater. 504 122
[14] Tan L, Kim B K, Yang Y, Field K G, Gray S and Li M 2017 J. Nucl. Mater. 493 12
[15] Zhu H P, Hao Z L, Shen T L, Cui M H, Fang X S, Wang Z G, Niu F L, Zhao Y G, Yang A X and Zhang Y 2017 Fusion Engineering and Design 125 372
[16] Zhu H P, Wang Z G, Cui M H, Li B S, Gao X, Sun J R, Yao C F, Wei K F, Shen T L, Pang L L, Zhu Y B, Li Y F, Wang J and Xie E Q 2015 Appl. Surf. Sci. 326 1
[17] Zheng C and Kaoumi D 2020 J. Nucl. Mater. 540 9
[18] Liu X, Miao Y B, Li M M, Kirk M A, Maloy S A and Stubbins J F 2017 J. Nucl. Mater. 490 305
[19] Biersack J P and Ziegler J F 1984 Ion Implantation Science and Technology 1 51
[20] Kumar N N, Tewari R, Mukherjee P, Gayathri N, Durgaprasad P V, Taki G S, Krishna J B M, Sinha A K, Pant P, Revally A K, Dutta B K and Dey G K 2017 Radiation Effects and Defects in Solids 172 678
[21] Jiao Z J, Shankar V and Was G S 2011 J. Nucl. Mater. 419 52
[22] Yamashita S, Yano Y, Tachi Y and Akasaka N 2009 J. Nucl. Mater. 386-388 135
[23] Xu H X, Stoller R E, Osetsky Y N and Terentyev D 2013 Phys. Rev. Lett. 110 265503
[24] Taller S, Jiao Z J, Field K and Was G S 2019 J. Nucl. Mater. 527 151831
[25] Dutta A, Gayathri N, Mukherjee P, Dey S, Mandal S, Roy T K, Sarkar A, Neogy S and Sagdeo A 2019 J. Nucl. Mater. 514 161
[1] The effects of fast neutron irradiation on oxygen in Czochralski silicon
Chen Gui-Feng, Yan Wen-Bo, Chen Hong-Jian, Li Xing-Hua, Li Yang-Xian. Chin. Phys. B, 2009, 18(1): 293-297.
[3] Shi Bao-Chang, Guo Zhao-Li, Zheng Chu-Guang. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chin. Phys., 2002, 11(4): 366 -374 .
[4] Zhou Bo, Wu Shao-Quan, Sun Wei-Li, Zhou Xiao-Lin. The persistent current in an Aharonov-Bohm ring with a side-coupled quantum dot[J]. Chin. Phys., 2004, 13(2): 225 -228 .
[5] Jin Xing-Ri, Zhang Ying-Qiao, Jin Zhe, Zhang Shou. Generation of the nonlocal quantum entanglement of three three-level particles by local operations[J]. Chin. Phys., 2005, 14(10): 1936 -1941 .
[6] Dou Chun-Xia, Zhang Shu-Qing. H tracking control of coupled spatiotemporal chaos with parametric uncertainties based on fuzzy observers      [J]. Chin. Phys., 2005, 14(5): 902 -907 .
[7] Pascal Brault, Alain Pineau, Pascale Plantin, Anne-Lise Thomann, Wang Cong. X-ray diffraction study of effect of deposition conditions on α--β phase transition and stress evolution in sputter-deposited W coatings[J]. Chin. Phys., 2006, 15(2): 432 -436 .
[8] Luo Xiao-Sen, Lu Jian, Song Chun-Yuan, Liu Ying, Ni Xiao-Wu. Fluorescence spectrum characteristic of ethanol--water excimer and mechanism of resonance energy transfer[J]. Chin. Phys., 2007, 16(5): 1300 -1306 .
[9] Qi Wei, Zhang Yan, Wang Ying-Hai. Controlling a time-delay system using multiple delay feedback control[J]. Chin. Phys., 2007, 16(8): 2259 -2263 .
[10] X. H. Du, J. C. Huang. New criterion in predicting glass forming ability of various glass-forming systems[J]. Chin. Phys. B, 2008, 17(1): 249 -254 .