Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087101    DOI: 10.1088/1674-1056/ac0a60

CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice

Meng Lyu(吕孟)1,2, Hengcan Zhao(赵恒灿)1, Jiahao Zhang(张佳浩)1,2, Zhen Wang(王振)1,2, Shuai Zhang(张帅)1,2, and Peijie Sun(孙培杰)1,2,3,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Needle-like single crystals of CeAu2In4 have been grown from In flux and characterized as a new candidate of quasi-one-dimensional Kondo lattice compound by crystallographic, magnetic, transport, and specific-heat measurements down to very low temperatures. We observe an antiferromagnetic transition at TN ≈ 0.9 K, a highly non-mean-field profile of the corresponding peak in specific heat, and a large Sommerfeld coefficient γ =369 mJ·mol-1·K-2. The Kondo temperature TK is estimated to be 1.1 K, being low and comparable to TN. While Fermi liquid behavior is observed deep into the magnetically ordered phase, the Kadowaki-Woods ratio is much reduced relative to the expected value for Ce compounds with Kramers doublet ground state. Markedly, this feature shares striking similarities to that of the prototypical quasi-one-dimensional compounds YbNi4P2 and CeRh6Ge4 with tunable ferromagnetic quantum critical point. Given the shortest Ce-Ce distance along the needle direction, CeAu2In4 appears to be an interesting model system for exploring antiferromagnetic quantum critical behaviors in a quasi-one-dimensional Kondo lattice with enhanced quantum fluctuations.
Keywords:  heavy fermion      quasi-one-dimensional      Kondo lattice      magnetic phase transition  
Received:  28 April 2021      Revised:  07 June 2021      Accepted manuscript online:  11 June 2021
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.20.Eh (Rare earth metals and alloys)  
  72.15.-v (Electronic conduction in metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774404 and 52088101), the National Key R&D Program of China (Grant No. 2017YF A0303100), and the Chinese Academy of Sciences through the Strategic Priority Research Program (Grant No. XDB33000000).
Corresponding Authors:  Peijie Sun     E-mail:

Cite this article: 

Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰) CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice 2021 Chin. Phys. B 30 087101

[1] Shimozawa M, Goh S K, Shibauchi T and Matsuda Y 2016 Rep. Prog. Phys. 79 074503
[2] Shishido H, Shibauchi T, Yasu K, Kato T, Kontani H, Terashima T and Matsuda Y 2010 Science 327 980
[3] Doniach S 1977 Physica B+C 91 231
[4] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C and Coleman P 2003 Nature 424 524
[5] Izawa K, Yamaguchi H, Matsuda Y, Shishido H, Settai R and Onuki Y 2001 Phys. Rev. Lett. 87 057002
[6] Steppke A, Kuchler R, Lausberg S, Lengyel E, Steinke L, Borth R, Luhmann T, Krellner C, Nicklas, Geibel M C, Steglich F and Brando M 2013 Science 339 933
[7] Shen B, Zhang Y, Komijani Y, Nicklas M, Borth R, Wang A, Chen Y, Nie Z, Li R, Lu X, Lee H, Smidman M, Steglich F, Coleman P and Yuan H 2020 Nature 579 51
[8] Wang L, Fu Z, Sun J, Liu M, Yi W, Yi C, Luo Y, Dai Y, Liu G, Matsushita Y, Yamaura K, Lu L, Cheng J G, Yang Y F, Shi Y and Luo J 2017 npj Quantum Materials 2 36
[9] Salvador J R, Hoang K, Mahanti S D and Kanatzidis M G 2007 Inorg. Chem. 46 6933
[10] Sebastian C P, Salvador J, Martin J B and Kanatzidis M G 2010 Inorg. Chem. 49 10468
[11] Joshi D A, Manfrinetti P, Dhar S K and Thamizhavel A 2010 J. Phys.: Conf. Ser. 200 012074
[12] Paschen S and Si Q 2020 Nat. Rev. Phys. 3 9
[13] Pfau H, Daou R, Friedemann S, Karbassi S, Ghannadzadeh S, Küchler R, Hamann S, Steppke A, Sun D, König M, Mackenzie A P, Kliemt K, Krellner C and Brando M 2017 Phys. Rev. Lett. 119 126402
[14] Buschow K H J, de Wijn H W and van Diepen A M 1969 J. Chem. Phys. 50 137
[15] Zhao H, Zhang J, Hu S, Isikawa Y, Luo J, Steglich F and Sun P 2016 Phys. Rev. B 94 235131
[16] Busch G and Vogt O 1967 Phys. Lett. A 25 449
[17] Bartholin H, Florence D, Wang T and Vogt O 1974 Phys. Stat. Sol. 24 631
[18] Heer H, Furrert A, Halgt W and Vogt O 1979 J. Phys. C: Solid State Phys. 12 5207
[19] Fritsch V, Huang C L, Bagrets N, Grube K, Schumann S and Löhneysen H v 2013 Physica Status Solidi (b) 250 506
[20] Desgranges H U and Schotte K D 1982 Phys. Lett. A 91 240
[21] Yashima H 1982 Solid State Commun. 43 193
[22] Kadowaki K and Woods S 1986 Solid State Commun. 58 507
[23] Tsujii N, Kontani H and Yoshimura K 2005 Phys. Rev. Lett. 94 057201
[24] Huesges Z, Kliemt K, Krellner C, Sarkar R, Klauß H H, Geibel C, Rotter M, Novák P, Kuneš J and Stockert O 2018 New J. Phys. 20 073021
[25] Voßwinkel D, Niehaus O, Rodewald U C and Pöttgen R 2012 Zeitschrift für Naturforschung B 67 1241
[26] Shu J W, Adroja D T, Hillier A D, Zhang Y J, Chen Y X, Shen B, Orlandi F, Walker H C, Liu Y, Cao C, Steglich F, Yuan H Q and Smidman M 2021 arXiv:2102.12788
[1] Intercalation of van der Waals layered materials: A route towards engineering of electron correlation
Jingjing Niu(牛晶晶), Wenjie Zhang(章文杰), Zhilin Li(李治林), Sixian Yang(杨嗣贤), Dayu Yan(闫大禹), Shulin Chen(陈树林), Zhepeng Zhang(张哲朋), Yanfeng Zhang(张艳锋), Xinguo Ren(任新国), Peng Gao(高鹏), Youguo Shi(石友国), Dapeng Yu(俞大鹏), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(9): 097104.
[2] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[3] Role of the spin anisotropy of the interchain interaction in weakly coupled antiferromagnetic Heisenberg chains
Yuchen Fan(樊宇辰), Rong Yu(俞榕). Chin. Phys. B, 2020, 29(5): 057505.
[4] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[5] Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice
Xin Li(李欣), Rong Yu(俞榕), Qimiao Si. Chin. Phys. B, 2019, 28(7): 077102.
[6] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[7] Pressure effect in the Kondo semimetal CeRu4Sn6 with nontrivial topology
Jiahao Zhang(张佳浩), Shuai Zhang(张帅), Ziheng Chen(陈子珩), Meng Lv(吕孟), Hengcan Zhao(赵恒灿), Yi-feng Yang(杨义峰), Genfu Chen(陈根富), Peijie Sun(孙培杰). Chin. Phys. B, 2018, 27(9): 097103.
[8] Optical study on intermediate-valence compounds Yb1-xLuxAl3
J L Lv(吕佳林), J L Luo(雒建林), N L Wang(王楠林). Chin. Phys. B, 2018, 27(1): 017803.
[9] Electronic structure of heavy fermion system CePt2In7 from angle-resolved photoemission spectroscopy
Bing Shen(沈兵), Li Yu(俞理), Kai Liu(刘凯), Shou-Peng Lyu(吕守鹏), Xiao-Wen Jia(贾小文), E D Bauer, J D Thompson, Yan Zhang(张艳), Chen-Lu Wang(王晨露), Cheng Hu(胡成), Ying Ding(丁颖), Xuan Sun(孙璇), Yong Hu(胡勇), Jing Liu(刘静), Qiang Gao(高强), Lin Zhao(赵林), Guo-Dong Liu(刘国东), Zu-Yan Xu(许祖彦), Chuang-Tian Chen(陈创天), Zhong-Yi Lu(卢仲毅), X J Zhou(周兴江). Chin. Phys. B, 2017, 26(7): 077401.
[10] Superconductivity in self-flux-synthesized single crystalline R2Pt3Ge5(R = La, Ce, Pr)
Q Sheng(盛琪), J Zhang(张建), K Huang(黄百畅), Z Ding(丁兆峰), X Peng(彭小冉), C Tan(谭程), L Shu(殳蕾). Chin. Phys. B, 2017, 26(5): 057401.
[11] Quantum critical behavior in an antiferromagnetic heavy-fermion Kondo lattice system (Ce1-xLax)2Ir3Ge5
Rajwali Khan, Qianhui Mao(毛乾辉), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Jianhua Du(杜建华), Binjie Xu(许彬杰), Yuxing Zhou(周宇星), Yannan Zhang(张燕楠), Bing Chen(陈斌), Minghu Fang(方明虎). Chin. Phys. B, 2017, 26(1): 017401.
[12] High-pressure studies on heavy fermion systems
Ye Chen(陈晔), Zongfa Weng(翁宗法), Smidman Michael, Xin Lu(路欣), Huiqiu Yuan(袁辉球). Chin. Phys. B, 2016, 25(7): 077401.
[13] Pressure induced magnetic and semiconductor-metal phase transitions in Cr2MoO6
San-Dong Guo(郭三栋). Chin. Phys. B, 2016, 25(5): 057104.
[14] Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals
Ling-Wei Li(李领伟). Chin. Phys. B, 2016, 25(3): 037502.
[15] Growth and characterization of CaCu3Ru4O12 single crystal
Wang Rong-Juan, Zhu Yuan-Yuan, Wang Li, Liu Yong, Shi Jing, Xiong Rui, Wang Jun-Feng. Chin. Phys. B, 2015, 24(9): 097501.
[1] Jia Yu, Ma Bing-xian, Shen San-guo, Yang Shi-e. CALCULATION OF ELECTRONIC STATES OF Si(337) SURFACE[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(1): 46 -51 .
[2] Ding Xiu-xiang, Liang Jiu-qing. LARMOR PRECESSION AND THE BARRIER INTERACTION TIME[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(6): 409 -415 .
[3] Xue Qi-zhen, S. Kuwano, K. Nakayama, T. Sakurai, Xue Qi-kun. GROWTH MODE AND SURFACE RECONSTRUCTION OF GaN(0001) THIN FILMS ON 6H-SiC(0001)[J]. Chin. Phys., 2001, 10(13): 157 -162 .
[5] Wu Xiang-Yao, Yin Xin-Guo, Guo Yi-Qing. Non-factorizable contributions in D0→π+π- decay[J]. Chin. Phys., 2004, 13(4): 469 -472 .
[6] Wu Hui-Bin. Potential method of integration for solving the equations of mechanical systems[J]. Chin. Phys., 2006, 15(5): 899 -902 .
[7] Luo Zheng-Ming, Deng Bai-Quan, Peng Li-Lin, Yan Jian-Cheng, Chen Zhi. Damaging impacts of energetic charge particles on materials in plasma energy explosive events[J]. Chin. Phys., 2006, 15(7): 1486 -1491 .
[8] Liu Xiao-Juan, Zhou Bing-Ju, Liu Ming-Wei, Li Shou-Cun. Preparation and control of entangled states in the two-mode coherent fields interacting with a moving atom via two-photon process[J]. Chin. Phys., 2007, 16(12): 3685 -3691 .
[9] Zhang Sheng-Hai, Qian Xing-Zhong, Liu Yu-Jin. Chaos synchronization in injection-locked semiconductor lasers with optical feedback[J]. Chin. Phys., 2007, 16(2): 463 -467 .
[10] Jiang Chang-Sheng, Liu Yang-Zheng, Lin Chang-Sheng, Jiang Yao-Mei. Chaos synchronization between two different 4D hyperchaotic Chen systems[J]. Chin. Phys., 2007, 16(3): 660 -665 .