Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 086110    DOI: 10.1088/1674-1056/ac0901
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Modification of short-range repulsive interactions in ReaxFF reactive force field for Fe-Ni-Al alloy

Huaqiang Chen(陈华强)1, Lin Lang(稂林)2, Shuaiyu Yi(易帅玉)2, Jinlong Du(杜进隆)1, Guangdong Liu(刘广东)2, Lixia Liu(刘丽霞)2, Yufei Wang(王宇飞)1, Yuehui Wang(王悦辉)3, Huiqiu Deng(邓辉球)2,†, and Engang Fu(付恩刚)1,‡
1 State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China;
2 Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China;
3 Department of Chemistry and Biology, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
Abstract  The short-range repulsive interactions of any force field must be modified to be applicable for high energy atomic collisions because of extremely far from equilibrium state when used in molecular dynamics (MD) simulations. In this work, the short-range repulsive interaction of a reactive force field (ReaxFF), describing Fe-Ni-Al alloy system, is well modified by adding a tabulated function form based on Ziegler-Biersack-Littmark (ZBL) potential. The modified interaction covers three ranges, including short range, smooth range, and primordial range. The short range is totally predominated by ZBL potential. The primordial range means the interactions in this range is the as-is ReaxFF with no changes. The smooth range links the short-range ZBL and primordial-range ReaxFF potentials with a taper function. Both energies and forces are guaranteed to be continuous, and qualified to the consistent requirement in LAMMPS. This modified force field is applicable for simulations of energetic particle bombardments and reproducing point defects' booming and recombination effectively.
Keywords:  molecular dynamics      force field modification      Fe-Ni-Al alloy      irradiation  
Received:  29 May 2021      Revised:  04 June 2021      Accepted manuscript online:  08 June 2021
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  61.80.-x (Physical radiation effects, radiation damage)  
  61.82.-d (Radiation effects on specific materials)  
  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
Fund: Project supported by the National Magnetic Confinement Fusion Energy Research Project (Grant Nos. 2019YFE03120003, 2018YFE0307100, and 2017YFE0302500) and the National Natural Science Foundation of China (Grant Nos. 11975034, 11921006, 12004010, and U20B2025).
Corresponding Authors:  Huiqiu Deng, Engang Fu     E-mail:;

Cite this article: 

Huaqiang Chen(陈华强), Lin Lang(稂林), Shuaiyu Yi(易帅玉), Jinlong Du(杜进隆), Guangdong Liu(刘广东), Lixia Liu(刘丽霞), Yufei Wang(王宇飞), Yuehui Wang(王悦辉), Huiqiu Deng(邓辉球), and Engang Fu(付恩刚) Modification of short-range repulsive interactions in ReaxFF reactive force field for Fe-Ni-Al alloy 2021 Chin. Phys. B 30 086110

[1] Lin Y, Yang T, Lang L, Shan C, Deng H, Hu W and Gao F 2020 Acta Materialia 196 133
[2] Nastasi M A, Mayer J W and Hirvonen J K 2004 Ion-solid interactions: fundamentals and applications (Cambridge; New York: Cambridge University Press) pp. 218-221
[3] Beyerlein I J, Demkowicz M J, Misra A and Uberuaga B P 2015 Prog. Mater. Sci. 74 125
[4] Fu E G, Caro M, Zepeda-Ruiz L A, Wang Y Q, Baldwin K, Bringa E, Nastasi M and Caro A 2012 Appl. Phys. Lett. 101 191607
[5] Chenoweth K, van Duin A C T and Goddard W A 2008 J. Phys. Chem. A 112 1040
[6] Plimpton S 1995 J. Comput. Phys. 117 1
[7] Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J, Aktulga H M, Verstraelen T, Grama A and van Duin A C T 2016 npj Comput. Mater. 2 15011
[8] Smith R, Jolley K, Latham C, Heggie M, van Duin A, van Duin D and Wu H Z 2017 Nucl. Instrum. Methods Phys. Res. Sect. B 393 49
[9] Anders C and Urbassek H M 2013 Nucl. Instrum. Method B 303 200
[10] Kanski M, Maciazek D, Postawa Z, Ashraf C M, van Duin A C T and Garrison B J 2018 J. Phys. Chem. Lett. 9 359
[11] Byggmastar J, Granberg F and Nordlund K 2018 J. Nucl. Mater. 508 530
[12] Liu L C, Liu Y, Zybin S V, Sun H and Goddard W A 2011 J. Phys. Chem. A 115 11016
[13] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818
[14] Ackland G J, Bacon D J, Calder A F and Harry T 1997 Philos. Mag. A 75 713
[15] Malerba L, Marinica M C, Anento N, Bjorkas C, Nguyen H, Domain C, Djurabekova F, Olsson P, Nordlund K, Serra A, Terentyev D, Willaime F and Becquart C S 2010 J. Nucl. Mater. 406 19
[16] Chen Y C, Li Y H, Gao N, Zhou H B, Hu W Y, Lu G H, Gao F and Deng H Q 2018 J. Nucl. Mater. 502 141
[17] Bonny G, Castin N, Bullens J, Bakaev A, Klaver T C P and Terentyev D 2013 J. Phys.: Condens. Matter 25 31
[18] Shin Y K, Kwak H, Zou C Y, Vasenkov A V and van Duin A C T 2012 J. Phys. Chem. A 116 12163
[19] Mortier W G and Shankar, S 1986 J. Am. Chem. Soc. 108 4315
[20] Baik S I, Wang S Y, Liaw P K and Dunand D C 2018 Acta Materialia 157 142
[21] Stukowski A 2010 Model. Simul. Mater. Sci. 18 015012
[22] Stukowski A, Bulatov V V and Arsenlis A 2012 Model. Simul. Mater. Sci. 20 8
[23] Haas P, Tran F and Blaha P 2009 Phys. Rev. B 79 085104
[24] Tran R, Xu Z H, Radhakrishnan B, Winston D, Sun W H, Persson K A and Ong S P 2016 Sci. Data 3 160080
[25] Kittel C and McEuen P 2018 Introduction to solid state physics (Hoboken: John Wiley & Sons) p. 20
[26] Mendelev M I, Han S W, Son W J, Ackland G J and Srolovitz D J 2007 Phys. Rev. B 76 214105
[27] Pascuet M I and Fernandez J R 2015 J. Nucl. Mater. 467 229
[28] Pun G P P and Mishin Y 2009 Philos. Mag. 89 3245
[1] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[4] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[5] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[6] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[10] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[11] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[12] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[13] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[14] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[15] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
No Suggested Reading articles found!