Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 086110    DOI: 10.1088/1674-1056/ac0901
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Modification of short-range repulsive interactions in ReaxFF reactive force field for Fe-Ni-Al alloy

Huaqiang Chen(陈华强)1, Lin Lang(稂林)2, Shuaiyu Yi(易帅玉)2, Jinlong Du(杜进隆)1, Guangdong Liu(刘广东)2, Lixia Liu(刘丽霞)2, Yufei Wang(王宇飞)1, Yuehui Wang(王悦辉)3, Huiqiu Deng(邓辉球)2,†, and Engang Fu(付恩刚)1,‡
1 State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China;
2 Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China;
3 Department of Chemistry and Biology, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
Abstract  The short-range repulsive interactions of any force field must be modified to be applicable for high energy atomic collisions because of extremely far from equilibrium state when used in molecular dynamics (MD) simulations. In this work, the short-range repulsive interaction of a reactive force field (ReaxFF), describing Fe-Ni-Al alloy system, is well modified by adding a tabulated function form based on Ziegler-Biersack-Littmark (ZBL) potential. The modified interaction covers three ranges, including short range, smooth range, and primordial range. The short range is totally predominated by ZBL potential. The primordial range means the interactions in this range is the as-is ReaxFF with no changes. The smooth range links the short-range ZBL and primordial-range ReaxFF potentials with a taper function. Both energies and forces are guaranteed to be continuous, and qualified to the consistent requirement in LAMMPS. This modified force field is applicable for simulations of energetic particle bombardments and reproducing point defects' booming and recombination effectively.
Keywords:  molecular dynamics      force field modification      Fe-Ni-Al alloy      irradiation  
Received:  29 May 2021      Revised:  04 June 2021      Accepted manuscript online:  08 June 2021
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  61.80.-x (Physical radiation effects, radiation damage)  
  61.82.-d (Radiation effects on specific materials)  
  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
Fund: Project supported by the National Magnetic Confinement Fusion Energy Research Project (Grant Nos. 2019YFE03120003, 2018YFE0307100, and 2017YFE0302500) and the National Natural Science Foundation of China (Grant Nos. 11975034, 11921006, 12004010, and U20B2025).
Corresponding Authors:  Huiqiu Deng, Engang Fu     E-mail:  hqdeng@hnu.edu.cn;efu@pku.edu.cn

Cite this article: 

Huaqiang Chen(陈华强), Lin Lang(稂林), Shuaiyu Yi(易帅玉), Jinlong Du(杜进隆), Guangdong Liu(刘广东), Lixia Liu(刘丽霞), Yufei Wang(王宇飞), Yuehui Wang(王悦辉), Huiqiu Deng(邓辉球), and Engang Fu(付恩刚) Modification of short-range repulsive interactions in ReaxFF reactive force field for Fe-Ni-Al alloy 2021 Chin. Phys. B 30 086110

[1] Lin Y, Yang T, Lang L, Shan C, Deng H, Hu W and Gao F 2020 Acta Materialia 196 133
[2] Nastasi M A, Mayer J W and Hirvonen J K 2004 Ion-solid interactions: fundamentals and applications (Cambridge; New York: Cambridge University Press) pp. 218-221
[3] Beyerlein I J, Demkowicz M J, Misra A and Uberuaga B P 2015 Prog. Mater. Sci. 74 125
[4] Fu E G, Caro M, Zepeda-Ruiz L A, Wang Y Q, Baldwin K, Bringa E, Nastasi M and Caro A 2012 Appl. Phys. Lett. 101 191607
[5] Chenoweth K, van Duin A C T and Goddard W A 2008 J. Phys. Chem. A 112 1040
[6] Plimpton S 1995 J. Comput. Phys. 117 1
[7] Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J, Aktulga H M, Verstraelen T, Grama A and van Duin A C T 2016 npj Comput. Mater. 2 15011
[8] Smith R, Jolley K, Latham C, Heggie M, van Duin A, van Duin D and Wu H Z 2017 Nucl. Instrum. Methods Phys. Res. Sect. B 393 49
[9] Anders C and Urbassek H M 2013 Nucl. Instrum. Method B 303 200
[10] Kanski M, Maciazek D, Postawa Z, Ashraf C M, van Duin A C T and Garrison B J 2018 J. Phys. Chem. Lett. 9 359
[11] Byggmastar J, Granberg F and Nordlund K 2018 J. Nucl. Mater. 508 530
[12] Liu L C, Liu Y, Zybin S V, Sun H and Goddard W A 2011 J. Phys. Chem. A 115 11016
[13] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818
[14] Ackland G J, Bacon D J, Calder A F and Harry T 1997 Philos. Mag. A 75 713
[15] Malerba L, Marinica M C, Anento N, Bjorkas C, Nguyen H, Domain C, Djurabekova F, Olsson P, Nordlund K, Serra A, Terentyev D, Willaime F and Becquart C S 2010 J. Nucl. Mater. 406 19
[16] Chen Y C, Li Y H, Gao N, Zhou H B, Hu W Y, Lu G H, Gao F and Deng H Q 2018 J. Nucl. Mater. 502 141
[17] Bonny G, Castin N, Bullens J, Bakaev A, Klaver T C P and Terentyev D 2013 J. Phys.: Condens. Matter 25 31
[18] Shin Y K, Kwak H, Zou C Y, Vasenkov A V and van Duin A C T 2012 J. Phys. Chem. A 116 12163
[19] Mortier W G and Shankar, S 1986 J. Am. Chem. Soc. 108 4315
[20] Baik S I, Wang S Y, Liaw P K and Dunand D C 2018 Acta Materialia 157 142
[21] Stukowski A 2010 Model. Simul. Mater. Sci. 18 015012
[22] Stukowski A, Bulatov V V and Arsenlis A 2012 Model. Simul. Mater. Sci. 20 8
[23] Haas P, Tran F and Blaha P 2009 Phys. Rev. B 79 085104
[24] Tran R, Xu Z H, Radhakrishnan B, Winston D, Sun W H, Persson K A and Ong S P 2016 Sci. Data 3 160080
[25] Kittel C and McEuen P 2018 Introduction to solid state physics (Hoboken: John Wiley & Sons) p. 20
[26] Mendelev M I, Han S W, Son W J, Ackland G J and Srolovitz D J 2007 Phys. Rev. B 76 214105
[27] Pascuet M I and Fernandez J R 2015 J. Nucl. Mater. 467 229
[28] Pun G P P and Mishin Y 2009 Philos. Mag. 89 3245
[1] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[2] Sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size formed by laser irradiation
Xinxin Li(李欣欣), Zhen Deng(邓震), Sen Wang(王森), Jinbiao Liu(刘金彪), Jun Li(李俊), Yang Jiang(江洋), Ziguang Ma(马紫光), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 096104.
[3] Microstructure evolution of T91 steel after heavy ion irradiation at 550 ℃
Ligang Song(宋力刚), Bo Huang(黄波), Jianghua Li(李江华), Xianfeng Ma(马显锋), Yang Li(李阳), Zehua Fang(方泽华), Min Liu(刘敏), Jishen Jiang(蒋季伸), and Yanying Hu(胡琰莹). Chin. Phys. B, 2021, 30(8): 086103.
[4] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[5] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[6] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
[7] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[8] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[9] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[10] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[11] Heredity of clusters in the rapidly cooling processes of Al-doped Zr50Cu50 melts and its correlation with the glass-forming ability
Dadong Wen(文大东), Yonghe Deng(邓永和), Ming Gao(高明), and Zean Tian(田泽安). Chin. Phys. B, 2021, 30(7): 076101.
[12] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[13] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[14] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
[15] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[1] Yao Xin-cheng, Li Zhao-lin, Cheng Bing-ying, Han Xue-hai, Zhang Dao-zhong. INCREASING TRANSVERSE STABILITY OF OPTICAL TWEEZERS BY USING DUAL-GAUSSIAN BEAM PROFILE[J]. Chin. Phys., 2000, 9(1): 65 -68 .
[2] M. Matsumoto, A. Morisako, S. Takei, Ma Yun-Gui, Yang Zheng. Effects of underlayer materials and substrate temperatures on the structural and magnetic properties of Nd2Fe14B films[J]. Chin. Phys., 2004, 13(11): 1969 -1974 .
[3] Wen Lei, Li Shun-Guang, Huang Guo-Song, Hu Li-Li, Jiang Zhong-Hong. Optical transitions and upconversion properties of Er3+-doped chloride tellurite glasses[J]. Chin. Phys., 2004, 13(2): 258 -263 .
[4] Yu Si-Min, Qiu Shui-Sheng, Peng Shi-Guo, Lin Qing-Hua, Ma Zai-Guang. Generation and synchronization of N-scroll chaotic and hyperchaotic attractors in fourth-order systems[J]. Chin. Phys., 2004, 13(3): 317 -328 .
[5] Luo Ying, Ma Ben-Kun, Duan Su-Qing, Zhao Xian-Geng, Wang Li-Min. Effects of a donor on the bond property of quantum-dot molecules[J]. Chin. Phys., 2004, 13(6): 942 -947 .
[6] Lin Xue-Chun, Kong Yu-Peng, Zhang Ying, Zhang Jie, Yao Ai-Yun, Bi Yong, Sun Zhi-Pei, Cui Da-Fu, Li Rui-Ning, Wu Ling-An, Xu Zu-Yan. Mid-infrared generation based on a periodically poled LiNbO3 optical parametric oscillator[J]. Chin. Phys., 2004, 13(7): 1042 -1045 .
[7] Yang Shu-Zheng, Jiang Qing-Quan, Li Hui-Ling. Quantum tunnelling radiation of Einstein--Maxwell--Dilaton--Axion black hole[J]. Chin. Phys., 2005, 14(12): 2411 -2414 .
[8] Fu Shi-Liu, Yin Tao, Chai Fei. Synthesis and characterization of Ca2Sn1-xCexO4 with blue luminescence originating from Ce4+ charge transfer transition[J]. Chin. Phys., 2007, 16(10): 3129 -3133 .
[9] Jing Ji-Liang, Pan Qi-Yuan. Resonant frequencies of massless scalar field in rotating black-brane spacetime[J]. Chin. Phys. B, 2008, 17(6): 1985 -1989 .
[10] Tang Li. Quantum information procession with fermions based on charge detection[J]. Chin. Phys. B, 2009, 18(12): 5155 -5160 .