Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097805    DOI: 10.1088/1674-1056/ac0818
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer

Junhui Huang(黄君辉)1,2, Hao Chen(陈昊)1,2, Zhiyao Zhuo(卓志瑶)1,2, Jian Wang(王健)1,2, Shulun Li(李叔伦)1,2, Kun Ding(丁琨)1,2, Haiqiao Ni(倪海桥)1,2, Zhichuan Niu(牛智川)1,2,3, Desheng Jiang(江德生)1, Xiuming Dou(窦秀明)1,2,†, and Baoquan Sun(孙宝权)1,2,3,‡
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  A very long lifetime exciton emission with non-single exponential decay characteristics has been reported for single InA-s/GaAs quantum dot (QD) samples, in which there exists a long-lived metastable state in the wetting layer (WL) through radiative field coupling between the exciton emissions in the WL and the dipole field of metal islands. In this article we have proposed a new three-level model to simulate the exciton emission decay curve. In this model, assuming that the excitons in a metastable state will diffuse and be trapped by QDs, and then emit fluorescence in QDs, a stretched-like exponential decay formula is derived as $I\left( t \right)=A\, t^{\beta -1}{\rm e}^{-\left( rt \right)^{\beta }}$, which can describe well the long lifetime decay curve with an analytical expression of average lifetime $\langle\tau\rangle=\frac{1}{r}\mathrm{\Gamma } ( \frac{1}{\beta }+1 )$,where $\Gamma $ is the Gamma function. Furthermore, based on the proposed three-level model, an expression of the second-order auto-correlation function $g^{2}\left( t \right)$ which can fit the measured $g^{2}\left( t \right)$ curve well, is also obtained.
Keywords:  quantum dots      collective excitations      charge carriers      time resolved spectroscopy  
Received:  07 May 2021      Revised:  01 June 2021      Accepted manuscript online:  04 June 2021
PACS:  78.67.Hc (Quantum dots)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
  78.47.D- (Time resolved spectroscopy (>1 psec))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301202) and the National Natural Science Foundation of China (Grant Nos. 61827823 and 11974342).
Corresponding Authors:  Xiuming Dou, Baoquan Sun     E-mail:  xmdou04@semi.ac.cn;bqsun@semi.ac.cn

Cite this article: 

Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权) Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer 2021 Chin. Phys. B 30 097805

[1] Purcell E M 1946 Phys. Rev. 69 681
[2] Mie G 1908 Ann. Phys. 330 377
[3] García-Vidal F J and Pendry J B 1996 Phys. Rev. Lett. 77 1163
[4] ElKabbash M, Miele E, Fumani A K, Wolf M S, Bozzola A, Haber E, Shahbazyan T V, Berezovsky J, De Angelis F and Strangi G 2019 Phys. Rev. Lett. 122 203901
[5] Wang H Y, Su D, Yang S, Dou X M, Zhu H J, Jiang D S, Ni H Q, Niu Z C, Zhao C L and Sun B Q 2015 Chin. Phys. Lett. 32 107804
[6] Drexhage K H 1974 Prog. Opt. 12 165
[7] Chen H, Huang J H, He X W, Ding K, Ni H Q, Niu Z C, Jiang D S, Dou X M and Sun B Q 2020 ACS Photonics 7 3228
[8] Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D and Vos W L 2004 Nature 430 654
[9] Nirmal M, Norris D J, Kuno M, Bawendi M G, Efros A L and Rosen M 1995 Phys. Rev. Lett. 75 3728
[10] Wang X B, Yan L L, Li Y and Li X J 2015 Chin. Phys. Lett. 32 097802
[11] Brosseau C N, Perrin M, Silva C and Leonelli R 2010 Phys. Rev. B 82 085305
[12] Nikolaev I S, Lodahl P, van Driel A F, Koenderink A F and Vos W L 2007 Phys. Rev. B 75 115302
[13] Sturman B, Podivilov E and Gorkunov M 2003 Phys. Rev. Lett. 91 176602
[14] Aydiner E 2077 Chin. Phys. Lett. 24 1486
[15] Potuzak K, Welch R C and Mauro J C 2011 J. Chem. Phys. 135 214502
[16] Yu Y, Shang X J, Li M F, Zha G W, Xu J X, Wang L J, Wang G W, Ni H Q, Dou X M, Sun B Q and Niu Z C 2013 Appl. Phys. Lett. 102 201103
[17] Pan S J, Cao V, Liao M Y, Lu Y, Liu Z Z, Tang M C, Chen S M, Seeds A and Liu H Y 2019 J. Semicond. 40 101302
[18] Dalgarno P A, Smith J M, McFarlane J, Gerardot B D, Karrai K, Badolato A, Petroff P M and Warburton R J 2008 Phys. Rev. B 77 245311
[19] Yang J Z, Zopf M and Ding F 2020 J. Semicond. 41 011901
[20] Kurtsiefer C, Mayer S, Zarda P and Weinfurter H 2000 Phys. Rev. Lett. 85 290
[21] Kakalios J, Street R and Jackson W 1987 Phys. Rev. Lett. 59 1037
[22] Kitson S, Jonsson P, Rarity J and Tapster P 1998 Phys. Rev. A 58 620
[23] Wu E, Jacques V, Zeng H P, Grangier P, Treussart F and Roch J F 2006 Opt. Express 14 1296
[24] Reynaud S 1983 Ann. Phys. 8 315
[1] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[2] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[3] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[4] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[5] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
[6] Electron transfer properties of double quantum dot system in a fluctuating environment
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠). Chin. Phys. B, 2021, 30(4): 040307.
[7] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[8] Tuning energy transfer efficiency in quantum dots mixture by controling donor/acceptor ratio
Chang Liu(刘畅), Jing Liang(梁晶), Fangfang Wang(王芳芳), Chaojie Ma(马超杰), Kehai Liu(刘科海), Can Liu(刘灿), Hao Hong(洪浩), Huaibin Shen(申怀彬), Kaihui Liu(刘开辉), and Enge Wang(王恩哥). Chin. Phys. B, 2021, 30(12): 127802.
[9] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[10] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[11] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[12] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[13] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[14] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[15] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[1] LUO ZHEN-FEI, XU ZHI-ZHAN, ZHOU JIAO-YANG. ATOMIC-COHERENCE-INDUCED ENHANCEMENT OF REFRACTIVE INDEX[J]. Acta Phys. Sin. (Overseas Edition), 1993, 2(4): 252 -259 .
[2] LI YI-MIN, XIA HUI-RONG, WANG ZU-GENG, XU ZAI-XIN. SQUEEZED COHERENT THERMAL STATE AND ITS PHOTON NUMBER DISTRIBUTION[J]. Acta Phys. Sin. (Overseas Edition), 1997, 6(9): 681 -689 .
[3] Li Run-wei, Sun Ji-rong, Wang Zhi-hong, Chen Xin, Zhang Shao-ying, Shen Bao-gen. ENHANCEMENT OF FERROMAGNETIC CLUSTER INDUCED BY MAGNETIC FIELD IN THE PHASE-SEPARATED La0.5Ca0.5MnO3[J]. Chin. Phys., 2000, 9(8): 630 -633 .
[4] Wang Xin, Lu Zu-hong, Deng Hui-hua, Yu Tsing, Mao Hai-fang, Suzuki Toshishige. SURFACE CAPPING OF TiO2 COLLOIDAL NANOPARTICLES STUDIED BY FOURIER TRANSFORM RAMAN SPECTRA[J]. Chin. Phys., 2001, 10(13): 59 -64 .
[5] Li De-Sheng, Zhang Hong-Qing. The soliton-like solutions to the (2+1)-dimensional modified dispersive water-wave system[J]. Chin. Phys., 2004, 13(7): 984 -987 .
[6] Zheng Shi-Biao. Teleportation of atomic states with a weak coherent cavity field[J]. Chin. Phys., 2005, 14(9): 1825 -1827 .
[7] Zheng Shi-Wang, Tang Yi-Fa, Fu Jing-Li. Non-Noether symmetries and Lutzky conservative quantities of nonholonomic nonconservative dynamical systems[J]. Chin. Phys., 2006, 15(2): 243 -248 .
[8] Sun Jian-Cheng, Zhou Ya-Tong, Luo Jian-Guo. Prediction of chaotic systems with multidimensional recurrent least squares support vector machines[J]. Chin. Phys., 2006, 15(6): 1208 -1215 .
[9] Li Rui-Hong, Xu Wei, Li Shuang. Chaos control and reduced-order generalized synchronization for the Chen--Liao system[J]. Chin. Phys., 2007, 16(6): 1591 -1596 .
[10] Zhu Rong-Jiao, Xu Wei, Tian Yi-Ling, Hao Ji-Shuang. Fusion curves and thermodynamic properties of carbon tetrachloride, chloroform, bromoform and silicon tetrachloride at pressure up to 3500Mpa[J]. Chin. Phys. B, 2008, 17(3): 1088 -1093 .