Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 114204    DOI: 10.1088/1674-1056/ac078d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A low noise, high fidelity cross phase modulation in multi-level atomic medium

Liangwei Wang(王亮伟)1, Jia Guan(关佳)2, Chengjie Zhu(朱成杰)3,4,†, Runbing Li(李润兵)5,‡, and Jing Shi(石兢)1,§
1 Laboratory of Artificial Micro-and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China;
2 School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
3 School of Physical Science and Technology, Soochow University, Suzhou 215006, China;
4 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China;
5 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  We develop a hybrid scheme of cross phase modulation based on electromagnetically induced transparency (EIT) and active Raman gain (ARG) in a multi-level atomic medium. The cross phase modulation, with low loss and without noise, is demonstrated in a room-temperature 85Rb vapor. We show that a π radian nonlinear Kerr phase shift of the signal light relative to a reference light is observed when the signal light is modulated by the phase control field with the low light intensity. We also show that the linear and the third-order absorption can be eliminated via the Raman gain, and the phase noise of the signal light can be ignored when the phase control light is applied in this hybrid scheme.
Keywords:  phase modulation      electromagnetically induced transparency      nonlinear Kerr phase shift  
Received:  01 February 2021      Revised:  23 March 2021      Accepted manuscript online:  03 June 2021
PACS:  42.65.Dr (Stimulated Raman scattering; CARS)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774262 and 61975154).
Corresponding Authors:  Chengjie Zhu, Runbing Li, Jing Shi     E-mail:  chengjie.zhu@yahoo.com;rbli@wipm.ac.cn;jshi@whu.edu.cn

Cite this article: 

Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢) A low noise, high fidelity cross phase modulation in multi-level atomic medium 2021 Chin. Phys. B 30 114204

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Gisin N, Ribordy G W, Tittel G and Zbinden H 2002 Rev. Mod. Phys. 74 145
[3] Vedral V 2007 Introduction to Quantum Information Science (New York: Oxford University Press)
[4] Matthews J C F 2013 Multi-Photon Quantum Information Science and Technology in Integrated Optics (Berlin: Springer)
[5] Lasky R C, Osterberg U L and Stigliani D P 1995 Optoelectronics for Data Communications 1st edn (Salt Lake City: Academic Press)
[6] Crespi A, Ramponi R, Osellame R, Sansoni L, Bongioanni I, Sciarrino F, Vallone G and Mataloni P 2011 Nat. Commun. 2 566
[7] Vitali D, Fortunato M and Tombesi P 2000 Phys. Rev. Lett. 85 445
[8] Ottaviani C, Vitali D, Artoni M, Cataliotti F and Tombesi P 2003 Phys. Rev. Lett. 90 197902
[9] Lukin M D and Imamoglu A 2001 Nature 413 273
[10] Resch K J, Lundeen J S and Steinberg A M 2002 Phys. Rev. Lett. 89 037904
[11] Agrawal G P 2006 Nonlinear Fiber Optics 4th edn (New York: Academic Press)
[12] Schmidt H and Imamoglu A 1996 Opt. Lett. 21 1936
[13] Harris S E 1997 Phys. Today 50 36
[14] Kang H S and Zhu Y F 2003 Phys. Rev. Lett. 91 093601
[15] Chen Y F, Wang C Y, Wang S H and Yu I A 2006 Phys. Rev. Lett. 96 043603
[16] Bai J H, Li J J, Wu L A, Fu P M, Wang R Q and Zuo Z C 2017 Chin. Phys. B 26 044204
[17] Wang M, Lu X G, Bai J H, Pei L Y, Miao X X, Gao Y L, Wu L A, Fu P M, Yang S P, Pang Z G, Wang R Q and Zuo Z C 2015 Chin. Phys. B 24 114205
[18] Deng L and Payne M G 2007 Phys. Rev. Lett. 98 253902
[19] Li R B, Deng L and Hagley E W 2013 Phys. Rev. Lett. 110 113902
[20] Li R B, Deng L and Hagley E W 2014 Phys. Rev. A 90 063806
[21] Hu M, Yang Y F, Zheng Y, Liu G B, Wang J H, Liu K, Chen X L, Zhao C, He B and Zhou J 2016 Chin. Phys. Lett. 33 044208
[22] Cai X L, Zhou C H, Zhou D J, Liu J B, Guo J W and Gui L 2015 Chin. Phys. Lett. 32 114207
[23] Lei C M, Song R, Jin A J and Hou J 2015 Chin. Phys. Lett. 32 074202
[24] Zhang H N, Chen X H, Wang Q P and Li P 2015 Chin. Phys. Lett. 32 014203
[25] Xu Y, Chen M, Li Z W, Bai Z X, Yang C, Chen L Y, Li G and Liu Y 2013 Chin. Phys. Lett. 30 084202
[26] Shi J L, Xu J, Luo N N, Wang Q, Zhang Y B, Zhang W W and He X D 2019 Acta Phys. Sin. 68 044201 (in Chinese)
[27] Sheng Z C, Wang T, Zhou G Y, Xia C M, Liu J T, Li B Y, Fan H X, Chen Y and Hou Z Y 2018 Acta Phys. Sin. 67 184211 (in Chinese)
[28] Ma H M, Chen L Q and Yuan C H 2016 Chin. Phys. B 25 124206
[29] Artoni M and Zavatta A 2015 Phys. Rev. Lett. 115 113005
[30] Sun Y, Liu C, Chen P X and Liu L 2018 Phys. Rev. A 97 023815
[31] Li R B, Zhu C J, Deng L and Hagley E W 2014 Appl. Phys. Lett. 105 161103
[32] Zhu C J, Deng L and Hagley E W 2014 Phys. Rev. A 90 063841
[33] Li R B, Zhu C J, Deng L and Hagley E W 2015 Phys. Rev. A 92 043838
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[7] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[8] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[9] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[10] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[11] High-efficiency reflection phase tunable metasurface at near-infrared frequencies
Ce Li(李策), Wei Zhu(朱维), Shuo Du(杜硕), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2021, 30(5): 057802.
[12] Dual-function beam splitter of high contrast gratings
Wen-Jing Fang(房文敬), Xin-Ye Fan(范鑫烨), Hui-Juan Niu(牛慧娟), Xia Zhang (张霞), Heng-Ying Xu(许恒迎), and Cheng-Lin Bai(白成林). Chin. Phys. B, 2021, 30(4): 044205.
[13] Phase-shift interferometry measured transmission matrix of turbid medium: Three-step phase-shifting interference better than four-step one
Xi-Cheng Zhang(张熙程), Zuo-Gang Yang(杨佐刚), Long-Jie Fang(方龙杰), Jing-Lei Du(杜惊雷), Zhi-You Zhang(张志友), and Fu-Hua Gao(高福华). Chin. Phys. B, 2021, 30(10): 104202.
[14] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[15] Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology
Yuan Yuan(袁园), Min-Yuan Sun(孙敏远), Yong Bi(毕勇), Wei-Nan Gao(高伟男), Shuo Zhang(张硕), and Wen-Ping Zhang(张文平). Chin. Phys. B, 2021, 30(1): 014209.
No Suggested Reading articles found!