Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 084206    DOI: 10.1088/1674-1056/ac0696
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Solar energy full-spectrum perfect absorption and efficient photo-thermal generation

Zhefu Liao(廖喆夫), Zhengqi Liu(刘正奇), Qizhao Wu(吴起兆), Xiaoshan Liu(刘晓山), Xuefeng Zhan(詹学峰), Gaorong Zeng(曾高荣), and Guiqiang Liu(刘桂强)
College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China
Abstract  Designing and manufacturing cost-effective absorbers that can cover the full-spectrum of solar irradiation is still critically important for solar harvesting. Utilizing control of the lightwave reflection and transmission, metamaterials realize high absorption over a relatively wide bandwidth. Here, a truncated circular cone metasurface (TCCM) composed of alternating multiple layers of titanium (Ti) and silicon dioxide (SiO2) is presented. Enabled by the synergetic of surface plasmon resonances and Fabry-Pérot resonances, the TCCM simultaneously achieves high absorptivity (exceed 90%), and absorption broadband covers almost the entire solar irradiation spectrum. In addition, the novel absorber exhibits great photo-thermal property. By exploiting the ultrahigh melting point of Ti and SiO2, high-efficiency solar irradiation absorption and heat release have been achieved at 700℃ when the solar concentration ratio is 500 (i.e., incident light intensity at 5×105 W/m2). It is worth noting that the photo-thermal efficiency is almost unchanged when the incident angle increases from 0° to 45°. The outstanding capacity for solar harvesting and light-to-heat reported in this paper suggests that TCCM has great potential in photothermal therapies, solar desalination, and radiative cooling, etc.
Keywords:  solar energy      photo-thermal generation      perfect absorption      plasmonic  
Received:  08 May 2021      Revised:  25 May 2021      Accepted manuscript online:  29 May 2021
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  73.40.Rw (Metal-insulator-metal structures)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804134 and 11464019) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20202BBEL53036).
Corresponding Authors:  Zhengqi Liu, Guiqiang Liu     E-mail:  zliu@jxnu.edu.cn;liugq@jxnu.edu.cn

Cite this article: 

Zhefu Liao(廖喆夫), Zhengqi Liu(刘正奇), Qizhao Wu(吴起兆), Xiaoshan Liu(刘晓山), Xuefeng Zhan(詹学峰), Gaorong Zeng(曾高荣), and Guiqiang Liu(刘桂强) Solar energy full-spectrum perfect absorption and efficient photo-thermal generation 2021 Chin. Phys. B 30 084206

[1] Shin D, Kang G, Gupta P, Behera S, Lee H, Urbas A M, Park W and Kim K 2018 Adv. Opt. Mater. 6 1800317
[2] Khodasevych I E, Wang L, Mitchell A and Rosengarten G 2015 Adv. Opt. Mater. 3 852
[3] Jia Y, Ren P and Fan C 2020 Chin. Phys. B 29 104210
[4] Su V C, Chu C H, Sun G and Tsai D P 2018 Opt. Express 26 13148
[5] Wu Q N, Lan F, Tang X P and Yang Z Q 2015 Chin. Phys. Lett. 32 107801
[6] Yang J, Luo F, Kao T S, Li X, Ho G W, Teng J, Luo X and Hong M 2014 Light: Sci. Appl. 3 185
[7] Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S and Zhu J 2016 Nat. Photon. 10 393
[8] Qin F, Chen X, Yi Z, Yao W, Yang H, Tang Y, Yi Y, Li H and Yi Y 2020 Sol. Energy Mater. Sol. Cells 211 110535
[9] Zhu Y, Tang B, Yang N, Lang X, Su J and Li Z 2021 Physica E 126 114449
[10] Zhu Y, Tang B and Jiang C 2019 Appl. Phys. Express 12 032009
[11] Chen M K, Chu C H, Lin R J, Chen J W, Huang Y T, Huang T T, Kuo H Y and Tsai D P 2019 Jpn. J. Appl. Phys. 58 SK0801
[12] Fu W, Han Y, Li J, Wang H, Li H, Han K, Shen X and Cui T 2016 J. Phys. D: Appl. Phys. 49 285110
[13] Kim Y J, Yoo Y J, Kim K W, Rhee J Y, Kim Y H and Lee Y 2015 Opt. Express 23 3861
[14] Chen Y, Li X, Luo X, Maier S A and Hong M 2015 Photon. Res. 3 54
[15] Huang Y, Liu L, Pu M, Li X, Ma X and Luo X 2018 Nanoscale 10 8298
[16] Huang L J, Li J Q, Lu M Y, Chen Y Q, Zhu H J and Liu H Y 2020 Chin. Phys. B 29 014201
[17] Wang B X, Huang W Q and Wang L L 2017 RSC Adv. 7 42956
[18] Cao A L, Zhang K, Zhang J R, Liu Y and Kong W J 2020 Chin. Phys. B 29 114205
[19] Ren Y, Zhou T, Jiang C and Tang B 2021 Opt. Express 29 7666
[20] Tang B, Yang N, Huang L, Su J and Jiang C 2020 IEEE Photon. J. 12 1
[21] Shi J X, Zhang W C, Xu W, Zhu Q, Jiang X, Li D D, Yan C C and Zhang D H 2015 Chin. Phys. Lett. 32 094204
[22] Li W, Guler U, Kinsey N, Naik G V, Boltasseva A, Guan J, Shalaev V M and Kildishev V 2014 Adv. Mater. 26 7959
[23] Liu X, Tyler T, Starr T, Starr A F, Jokerst N M and Padilla W J 2011 Phys. Rev. Lett. 107 045901
[24] Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S and Fang N X 2012 Nano Lett. 12 1443
[25] Doiron B, Mota M, Wells M P, Bower R, Mihai A, Li Y, Cohen L F, Alford N M, Petrov P K, Oulton R F and Maier S A 2019 ACS Photon. 6 240
[26] Palik E D 1985 Handbook of Optical Constants of Solids (Boston: Academic Press) p. 189
[27] Komma J, Schwarz C, Hofmann G, Heinert D and Nawrodt R 2012 Appl. Phys. Lett. 101 041905
[28] Pustovalov V K 2016 RSC Adv. 6 81266
[29] Chen X, Chen Y, Yan M and Qiu M 2012 ACS Nano 6 2550
[30] Tittl A, Harats M G, Walter R, Yin X, Schaäferling M, Liu N, Rapaport R and Giessen H 2014 ACS Nano 8 10885
[31] Hao J, Wang J, Liu X, Padilla W J, Zhou L and Qiu M 2010 Appl. Phys. Lett. 96 251104
[32] Wang Z, Zhang Z M, Quan X and Cheng P 2018 Sol. Energy 159 329
[33] Putnin T, Lertvachirapaiboon C, Ishikawa R, Shinbo K, Kato K, Ekgasit S, Ounnunkad K and Baba A 2019 Opto-Electron. Adv. 2 190010
[34] Zhang D and Sugioka K 2019 Opto-Electron. Adv. 2 190002
[35] Wood B, Pendry J B and Tsai D P 2006 Phys. Rev. B 74 115116
[36] Bohren C F and Huffman D R 1998 Absorption and Scattering of Light by Small Particles (Weinheim: Wiley-VCH)
[37] Zhang Z, Liang Y and Xu T 2017 Opto-Electron. Eng. 44 276
[38] Liu Z, Zhong H, Liu G, Liu X, Wang Y and Wang J 2020 Opt. Express 28 31763
[39] Chen M, He Y, Wang X and Hu Y 2018 Sol. Energy 161 17
[40] Li P, Liu B, Ni Y, Liew K K, Sze J, Chen S and Shen S 2015 Adv. Mater. 27 4585
[41] Manrique-Bedoya S, Abdul-Moqueet M, Lopez P, Gray T, Disiena M, Locker A, Kwee S, Tang L, Hood R L, Feng Y and Large N 2020 J. Phys. Chem. C 124 17172
[42] Li Y, Lin C, Wu Z, Chen Z, Chi C, Cao F, Mei D, Yan H, Tso C Y, Chao C Y and Huang B 2021 Adv. Mater. 33 2005074
[1] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[2] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
[3] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[4] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
[5] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[6] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[7] A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024207.
[8] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[9] Controllable and switchable chiral near-fields in symmetric graphene metasurfaces
Li Hu(胡莉), Hongxia Dai(代洪霞), Fayin Cheng(程发银), and Yuxia Tang(唐裕霞). Chin. Phys. B, 2021, 30(12): 127303.
[10] Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲). Chin. Phys. B, 2021, 30(11): 117301.
[11] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[12] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[13] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[14] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[15] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[1] MAO ZHI-QIANG, YANG LI, FAN CHENG-GAO, WANG NAN-LIN, YAO ZHEN, WANG YU, JI MING-RONG, ZHANG YU-HENG. STRUCTURE AND PROPERTIES OF THE La-DOPED Bi-2201 SYSTEM[J]. Acta Phys. Sin. (Overseas Edition), 1993, 2(8): 591 -603 .
[2] CHENG HUAN-SHENG, SHEN HAO, TANG JIA-YONG, YANG FU-JIA. THE STUDIES OF NON-RUTHERFORD BACKSCATTERING CROSS SECTIONS OF 4He FROM 16O[J]. Acta Phys. Sin. (Overseas Edition), 1993, 2(9): 641 -647 .
[3] WANG HAI-LONG, YANG XI-ZHEN, FENG SONG-LIN, ZHOU JIE. DETERMINATION OF CAPTURE BARRIERS OF DEFECTS FOR GaAs ALLOYS AND TRANSIENT PHOTO-RESISTIVITY SPECTROSCOPY[J]. Acta Phys. Sin. (Overseas Edition), 1996, 5(1): 1 -9 .
[4] Fang Jin-qing, Chen Guan-rong, Hong Yi-guang, Qin Hua-shu. CONTROLLING HOPF BIFURCATIONS: CONTINUOUS-TIME SYSTEMS[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(6): 416 -422 .
[5] Liu Xiao-Dong, Li Shu-Guang, Guo Hong-Lian, Zhang Dao-Zhong, Li Zhao-Lin, Hou Lan-Tian. Effects of matrices on Mie scattering in the mid-infrared region[J]. Chin. Phys., 2003, 12(10): 1143 -1148 .
[6] Jiang Li-Xia, Xia Zhao-Yang, Meng Ji-Bao, Chen Zhao-Jia, Luo Jian-Lin, Wang Nan-Lin. Low-temperature specific heat and resistance for the heavy-electron metals CeCu6-xMx (M=Ni,Zn)[J]. Chin. Phys., 2004, 13(12): 2130 -2135 .
[7] Bi Yong, Bo Yong, Li Rui-Ning, Cui Da-Fu, Xu Zu-Yan, Geng Ai-Cong, Sun Zhi-Pei, Yang Xiao-Dong, Peng Qin-Jun, Li Hui-Qing. 1.15kW continuous-wave generation by diode-side-pumped two-rod Nd:YAG laser[J]. Chin. Phys., 2005, 14(4): 771 -773 .
[8] Xie Wen-Xian, Xu Wei, Jin Yan-Fei, Cai Li. Upper bound for the time derivative of entropy for a dynamical system driven by coloured cross-correlated white noises[J]. Chin. Phys., 2005, 14(9): 1766 -1769 .
[9] Cheng Xin-Lu, Yang Xiang-Dong, Shao Ju-Xiang, He Bi. The evaluation of bond dissociation energies for NO2 scission in nitro compounds using density functional and complete basis set methods[J]. Chin. Phys., 2006, 15(2): 329 -333 .
[10] Chen Liang, Gao Ke-Lin. Two quantum oscillators coupled with a planar radio frequency ion trap[J]. Chin. Phys. B, 2010, 19(11): 110309 -110403 .