Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 088701    DOI: 10.1088/1674-1056/ac0690

Tunable inhibition of β-amyloid peptides by fast green molecules

Tiantian Yang(杨甜甜)1, Tianxiang Yu(俞天翔)1, Wenhui Zhao(赵文辉)1,†, and Dongdong Lin(林冬冬)1,2,‡
1 Department of Microelectronic Science and Engineering, Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
2 Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
Abstract  The aggregation of β-amyloid (Aβ) protein into toxic intermediates and mature fibrils is considered to be one of the main causes of Alzheimer's disease (AD). Small molecules as one of blockers are expected to be the potential drug treatment for the disease. However, the nucleation process in molecular assembly is less informative in the literatures. In this work, the formation of Aβ (16-22) peptides was investigated with the presence of small molecule of fast green (FG) at the initial aggregation stage. The results exhibited the tunable inhibitory ability of FG molecules on Aβ (16-22) peptides. Atomic force microscopy (AFM) demonstrated that the inhibitory effect would be dependent on the dose of FG molecules, which could delay the lag time (nucleation) and form single layer conjugates. Spectral measurements further showed that the β-sheet secondary structure of Aβ (16-22) reduced dramatically after the presence of FG molecules. Instead, non-β-sheet nanosheets were formed when the FG/Aβ (16-22) ratio reached 1:1. In addition, the cytotoxicity of aggregates reduced greatly with the presence of FG molecules compared with the Aβ (16-22) fibrils. Overall, this study provided a method for suppressing the toxic amyloid aggregates by FG molecules efficiently, and also showed a strategy for fabrication of two-dimensional materials by small molecules.
Keywords:  amyloid      fast green      aggregation      Alzheimer's disease  
Received:  15 May 2021      Revised:  26 May 2021      Accepted manuscript online:  29 May 2021
PACS:  87.15.-v (Biomolecules: structure and physical properties)  
  87.14.E- (Proteins)  
  31.15.xv (Molecular dynamics and other numerical methods)  
  68.37.Ps (Atomic force microscopy (AFM))  
Fund: Project supported by the National Natural Science Foundation of China (Grand No. 11804174), Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, and K. C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Wenhui Zhao, Dongdong Lin     E-mail:;

Cite this article: 

Tiantian Yang(杨甜甜), Tianxiang Yu(俞天翔), Wenhui Zhao(赵文辉), and Dongdong Lin(林冬冬) Tunable inhibition of β-amyloid peptides by fast green molecules 2021 Chin. Phys. B 30 088701

[1] Huntley J D and Howard R J 2010 Int. J. Geriatr. Psychiatry 25 121
[2] Morris R G and Mograbi D C 2013 Cortex 49 1553
[3] Gandhi J, Antonelli A C, Afridi A, Vatsia S, Joshi G, Romanov V, Murray I V J and Khan S A 2019 Rev. Neurosci. 30 339
[4] Younkin S G 1998 J. Physiol. 92 289
[5] Citron M 2010 Nat. Rev. Drug Discov. 9 387
[6] Mattson M P 2004 Nature 430 631
[7] Selkoe D J 2001 Physiol. Rev. 81 741
[8] Damante C A, Ösz K, Nagy Z, Grasso G, Pappalardo G, Rizzarelli E and Sóvágó I 2011 Inorg. Chem. 50 5342
[9] Li J, Liu R, Lam K S, Jin L W and Duan Y 2011 Biophys. J. 100 1076
[10] Chimon S, Shaibat M A, Jones C R, Calero D C, Aizezi B and Ishii Y 2008 Nat. Struct. Mol. Biol. 14 1157
[11] Klimov D K and Thirumalai D 2003 Structure. 11 295
[12] Lynn D and Meredith S 2000 J. Struct. Biol. 130 153
[13] Liang C, Ni R, Smith J E, Childers W S, Mehta A K and Lynn D G 2014 J. Am. Chem. Soc. 136 15146
[14] Balbach J J, Ishii Y, Antzutkin O N, Leapman R D, Rizzo N W, Dyda F, Reed J and Tycko R 2000 Biochemistry 39 13748
[15] Dai B, Li D, Xi W, Luo F, Zhang X, Zou M, Cao M, Hu J, Wang W, Wei G, Zhang Y and Liu C 2015 Proc. Natl. Acad. Sci. USA 112 2996
[16] Chen J, Zhu E, Liu J, Zhang S, Lin Z, Duan X, Heinz H, Huang Y and De Yoreo J J 2018 Science 362 1135
[17] Li H, Luo Y, Derreumaux P and Wei G 2011 Biophys J. 101 2267
[18] Lin D, Lei J, Li S, Zhou X, Wei G and Yang X 2020 J. Phys. Chem. B 124 3459
[19] Xie L, Luo Y, Lin D, Xi W, Yang X and Wei G 2014 Nanoscale 6 9752
[20] Li S, Wang L, Chusuei C, Suarez V, Blackwelder P, Micic M, Orbulescu J and Leblanc R 2015 Chem. Mater. 27 1764
[21] Liu Y, Xu L P, Dai W, Dong H, Wen Y and Zhang X 2015 Nanoscale 7 19060
[22] Ngo S T, Truong D T, Tam N M and Nguyen M T 2017 J. Mol. Graph. Model. 76 1
[23] Nespovitaya N, Mahou P, Laine R F, Schierle G S K and Kaminski C F 2017 Chem. Commun. (Camb). 53 1273
[24] Sun Y, Xi W and Wei G. 2015 J Phys Chem B. 119 2786
[25] Bieschke J, Herbst M, Wiglenda T, Friedrich R P, Boeddrich A, Schiele F, Kleckers D, Lopez del Amo JM, Grüning B A, Wang Q, Schmidt M R, Lurz R, Anwyl R, Schnoegl S, Fändrich M, Frank R F, Reif B, Günther S, Walsh D M and Wanker E E 2011 Nat. Chem. Biol. 8 93
[26] Meng F, Abedini A, Plesner A, Middleton C T, Potter K J, Zanni M T, Verchere C B and Raleigh D P 2010 J. Mol. Biol. 400 555
[27] Yang F, Lim G P, Begum A N, Ubeda O J, Simmons M R, Ambegaokar S S, Chen P P, Kayed R, Glabe C G, Frautschy S A and Cole G M 2005 J. Biol. Chem. 280 5892
[28] Necula M, Breydo L, Milton S, Kayed R, van der Veer W E, Tone P and Glabe C G 2007 Biochemistry 46 8850
[29] Lorenzo A and Yankner B A 1994 Proc. Natl. Acad. Sci. USA 91 12243
[30] How S C, Yang S M, Hsin A, Tseng C P, Hsueh S S, Lin M S, Chen R P, Chou W L and Wang S S 2016 Food Funct. 7 4898
[31] Young L M, Saunders J C, Mahood RA, Revill C H, Foster R J, Tu L H, Raleigh D P, Radford S E and Ashcroft A E 2015 Nat. Chem. 7 73
[32] Liu F, Wang W, Xuan Z, Jiang L, Chen B, Dong Q, Zhao F, Cui W, Li L and Lu F 2021 Int. J. Biol. Macromol. 170 33
[33] Lin D, Luo Y, Wu S, Ma Q, Wei G and Yang X 2014 Langmuir 30 3170
[34] Wen G, Qin W, Chen D, Wang Y, Yue X, Liu Z, Cao Y, Du J, Zhou B and Bu X 2017 Chem. Commun. (Camb). 53 3886
[35] Zhang J, Zhou L, Du Q, Shen Z, Hu J and Zhang Y 2019 Nanoscale. 11 8210
[36] Dai B, Kang S G, Huynh T, Lei H, Castelli M, Hu J, Zhang Y and Zhou R 2013 Proc. Natl. Acad. Sci. USA 110 8543
[37] Sedin D L and Rowlen K L 2000 Anal. Chem. 72 2183
[38] Jiang T and Zhu Y. 2015 Nanoscale 7 10760
[39] Kreis C T, Grangier A and Bäumchen O 2019 Soft Matter 15 3027
[40] Sarroukh R, Goormaghtigh E, Ruysschaert J M and Raussens V 2013 Biochim. Biophys. Acta 1828 2328
[41] Kong J and Yu S 2007 Acta Biochim. Biophys. Sin. (Shanghai). 39 549
[42] Kinoshita M, Lin Y, Dai I, Okumura M, Markova N, Ladbury JE, Sterpone F and Lee Y H 2018 Chem. Commun. (Camb). 54 7995
[43] Seong S H, Paudel P, Jung H A and Choi J S 2019 Mar. Drugs 17 600
[44] Lin D, Luo Y, Wu S, Ma Q, Wei G and Yang X 2014 Langmuir 30 3170
[45] Sun Q, Liu F, Sang J, Lin M, Ma J, Xiao X, Yan S, Naman CB, Wang N, He S, Yan X, Cui W and Liang H 2019 Mar. Drugs 17 121
[46] Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J L, Dror R O and Shaw D E 2010 Proteins 78 1950
[47] Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 J. Comput. Chem. 18 1463
[48] Miyamoto S and Kollman P A 1992 J. Comput. Chem. 13 952
[49] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[50] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[1] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[2] Modified Maxwell model for predicting thermal conductivity of nanocomposites considering aggregation
Wen-Kai Zhen(甄文开), Zi-Zhen Lin(蔺子甄), Cong-Liang Huang(黄丛亮). Chin. Phys. B, 2017, 26(11): 114401.
[3] Luminescent properties of thermally activated delayed fluorescence molecule with intramolecular π-π interaction betweendonor and acceptor
Lei Cai(蔡磊), Jianzhong Fan(范建忠), Xiangpeng Kong(孔祥朋), Lili Lin(蔺丽丽), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(11): 118503.
[4] Amyloid-β peptide aggregation and the influence of carbon nanoparticles
Wen-Hui Xi(郗文辉) and Guang-Hong Wei(韦广红). Chin. Phys. B, 2016, 25(1): 018704.
[5] Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates
Cheng Yi, Zhu Yu-Hong, Pan Qi-Fa, Yang Bo, Tao Xiang-Ming, Ye Gao-Xiang. Chin. Phys. B, 2015, 24(11): 118105.
[6] Aggregation of fullerene (C60) nanoparticle:A molecular-dynamic study
He Su-Zhen, Merlitz Holger, Wu Chen-Xu. Chin. Phys. B, 2014, 23(4): 048201.
[7] Evolution of nitrogen structure in N-doped diamond crystal after high pressure and high temperature annealing treatment
Zheng You-Jin, Huang Guo-Feng, Li Zhan-Chang, Zuo Gui-Hong. Chin. Phys. B, 2014, 23(11): 118102.
[8] Evolution behavior of catalytically activated replication–decline in a coagulation process
Gao Yan, Wang Hai-Feng, Zhang Ji-Dong, Yang Xia, Sun Mao-Zhu, Lin Zhen-Quan. Chin. Phys. B, 2013, 22(9): 096802.
[9] Bipolar resistive switching based on bis(8-hydroxyquinoline) cadmium complex:Mechanism and non-volatile memory application
Wang Ying, Yang Ting, Xie Ji-Peng, Lü Wen-Li, Fan Guo-Ying, Liu Su. Chin. Phys. B, 2013, 22(7): 077308.
[10] Coupling effect of Brownian motion and laminar shear flow on colloid coagulation:a Brownian dynamics simulation study
Xu Sheng-Hua,Sun Zhi-Wei,Li Xu,Tong Wang. Chin. Phys. B, 2012, 21(5): 054702.
[11] Influence of annealing treatment on as-grown Ib-type diamond crystal at a high temperature and high pressure
Huang Guo-Feng, Yin Ji-Wen, Bai Hong-Bo, HuYi-Ga, Kai Li, Jing Jing, Ma Hong-An, Jia Xiao-Peng. Chin. Phys. B, 2012, 21(10): 108102.
[12] Kinetics of catalytically activated aggregation–fragmentation process
Gao Yan, Wang Hai-Feng, Lin Zhen-Quan, Xue Xin-Ying. Chin. Phys. B, 2011, 20(8): 086801.
[13] Real-time observation of template-assisted colloidal aggregation and colloidal dispersion under an alternating electric field
Li Chao-Rong, Li Shu-Wen, Mei Jie, Xu Qing, Zheng Ying-Ying, Dong Wen-Jun. Chin. Phys. B, 2011, 20(7): 078102.
[14] Effect of secondary radiation force on aggregation between encapsulated microbubbles
Zhang Yan-Li, Zheng Hai-Rong, Tang Meng-Xing, Zhang Dong. Chin. Phys. B, 2011, 20(11): 114302.
[15] Electric dipolar interaction assisted growth of single crystalline organic thin films
Cai Jin-Ming, Zhang Yu-Yang, Hu Hao, Bao Li-Hong, Pan Li-Da, Tang Wei, Li Guo, Du Shi-Xuan, Shen Jian, Gao Hong-Jun. Chin. Phys. B, 2010, 19(6): 067101.
[3] Hou Jun-da, Zhang Tao, Tang Bao-yin, P. K. Chu, I. G. Brown. GUIDING OF PLASMA BY ELECTRIC FIELD AND MAGNETIC FIELD[J]. Chin. Phys., 2001, 10(5): 424 -428 .
[4] Su Guo-Lin, Ren Xue-Guang, Zhang Shu-Feng, Ning Chuan-Gang, Zhou Hui, Li Bin, Li Gui-Qin, Deng Jing-Kang. Experimental and calculated momentum densities for the complete valence orbitals of the antimicrobial agent diacetyl[J]. Chin. Phys., 2005, 14(10): 1966 -1973 .
[5] Wang Gang, Liang Xin-Gang. Development and evolution of flow over three-dimensional cylinder[J]. Chin. Phys., 2005, 14(7): 1392 -1397 .
[6] Zhang Jian-Min, Xu Ke-Wei. Evaluation of multiaxial stress in textured cubic films by x-ray diffraction[J]. Chin. Phys., 2005, 14(9): 1866 -1872 .
[7] Cai Da-Feng, Gu Yu-Qiu, Zheng Zhi-Jian, Zhou Wei-Min, Jiao Chun-Ye, Chen Hao, Wen Tian-Shu, Chunyu Shu-Tai. Effects of atomic number Z on the energy distribution of hot electrons generated by femtosecond laser interaction with metallic targets[J]. Chin. Phys., 2006, 15(10): 2363 -2367 .
[8] Xu Wen-Cheng, Gao Jie-Li, Liang Zhan-Qiang, Chen Qiao-Hong, Liu Song-Hao. Supercontinuum spectra generation in the single-mode optical fibre with concave dispersion profile[J]. Chin. Phys., 2006, 15(4): 715 -720 .
[9] Yu Jie, Wang Sen-Ming, Yuan Kai-Jun, Cong Shu-Lin. Photoionization of NaK molecule with a double-well potential in femtosecond pump--probe pulse laser fields[J]. Chin. Phys., 2006, 15(9): 1996 -2001 .
[10] Dai Chang-Jian, Li Shi-Ben. Saturation effects on Ba 6pnl (l=0,2) and 6pnk (|M|=0,1) autoionization spectra[J]. Chin. Phys., 2007, 16(2): 382 -391 .