Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 078401    DOI: 10.1088/1674-1056/ac05a3
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Artificial synaptic behavior of the SBT-memristor

Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅)
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
Abstract  The synapse of human brain neurons is not only the transmission channel of information, but also the basic unit of human brain learning and information storing. The artificial synapse is constructed based on the Sr0.97Ba0.03TiO3-x (SBT) memristor, which realizes the short-term and long-term plasticity of the synapse. The experiential learning and non-associative learning behavior in accordance with human cognitive rules are realized by using the SBT-memristor-based synapse. The process of synaptic habituation and sensitization is analyzed. This study provides insightful guidance for realization of artificial synapse and the development of artificial neural network.
Keywords:  memristor      artificial synapse      synaptic plasticity      experiential learning      non-associative learning  
Received:  31 March 2021      Revised:  29 April 2021      Accepted manuscript online:  27 May 2021
PACS:  84.32.-y (Passive circuit components)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61703246 and 61703247), the Qingdao Science and Technology Plan Project (Grant No. 19-6-2-2-cg), and the Elite Project of Shandong University of Science and Technology.
Corresponding Authors:  Mei Guo     E-mail:  m.guo@sdust.edu.cn

Cite this article: 

Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅) Artificial synaptic behavior of the SBT-memristor 2021 Chin. Phys. B 30 078401

[1] Liu H J, Ma L F, Wang Z D, Liu Y R and Alsaadi F E 2020 Neurocomputing 391 1
[2] Wang J R and Zhuge F 2019 Adv. Mater. Technol. 4 1800544
[3] Li B, Liu Y Q, Wan C J, Liu Z Y, Wang M, Qi D P, Yu J C, Cai P Q, Xiao M, Zeng Y and Chen X D 2018 Adv. Mater. 30 1706395
[4] Ziegler M, Riggert C, Hansen M, Bartsch T and Kohlstedt H 2015 IEEE Trans. Biomed. Circuits Syst. 9 197
[5] Nishitani Y, Kaneko Y and Ueda M 2015 IEEE Trans. Neural Networks Learn. Sys. 26 2999
[6] Li J X, Duan Q X, Zhang T, Yin M H, Sun X H, Cai Y M, Li L D, Yang Y C and Huang R 2017 RSC Adv. 7 43132
[7] Nair M V, Muller L K and Indiveri G 2017 Nano Futures 1 035003
[8] Chen J, Lin C Y, Li Y, Qin C, Lu K, Wang J M, Chen C K, He Y H, Chang T C, Sze S M and Miao X S 2019 IEEE Electron Device Lett. 40 542
[9] Jang B C, Kim S, Yang S Y, Park J, Cha J H, Oh J, Choi J, Im S G, Dravid V P and Choi S Y 2019 Nano Lett. 19 839
[10] Boybat I, Le Gallo M, Nandakumar S R, Moraitis T, Parnell T, Tuma T, Rajendran B, Leblebici Y, Sebastian A and Eleftheriou E 2018 Nat. Commun. 9 2514
[11] Hong Q H, Yan R A, Wang C H and Sun J R 2020 IEEE Trans. Biomed. Circuits Syst. 14 1036
[12] Chua L O 1971 IEEE Trans. Circ. Theory 18 507
[13] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[14] Vincent A F, Larroque J, Locatelli N, Romdhane N B, Bichler O, Gamrat C, Zhao W S, Klein J O, Galdin Retailleau S and Querlioz D 2015 IEEE Trans. Biomed. Circuits Syst. 9 166
[15] He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y and Guo X 2009 Small 14 1800079
[16] Das M, Kumar A, Singh R, Htay M T and Mukherjee S 2018 Nanotechnology 29 055203
[17] Lin Y, Zeng T, Xu H Y, Wang Z Q, Zhao X N, Liu W Z, Ma J Q and Liu Y C 2018 Adv. Electron. Mater. 4 1800373
[18] Feng X W, Li Y D, Wang L, Chen S, Yu Z G, Tan W C, Macadam N, Hu G H, Huang L, Chen L, Gong X, Chi D Z, Hasan T, Thean A V Y, Zhang Y W and Ang K Wee 2020 Adv. Electron. Mater. 5 1900740
[19] Jiang R, Ma P F, Han Z Y and Du X H 2017 Sci. Rep. 7 9354
[20] Chandrasekaran S, Simanjuntak F M, Saminathan R, Panda D and Tseng T Y 2019 Nanotechnology 30 445205
[21] Li S J, Dong B Y, Wang B, Li Y, Sun H J, He Y H, Xu N and Miao X S 2019 IEEE Trans. Electron Devices 66 810
[22] Kim S, Du C, Sheridan P, Ma W, Choi S and Lu W D 2015 Nano Lett. 15 2203
[23] Sokolov A S, Jeon Y R, Kim S, Ku B and Choi C 2019 NPG Asia Mater. 11 5
[24] Kumar M, Ban D K, Kim S M, Kim J and Wong C P 2019 Adv. Electron. Mater. 5 1900467
[25] Chen Z L, Yu Y, Jin L F, Li Y F, Li Q Y, Li T T, Zhang Y T, Dai H T and Yao J Q 2020 Mater. Des. 188 108415
[26] Aghnout S and Karimi G 2019 Integr VLSI J. 64 184
[27] Duan S K, Hu X F, Dong Z K, Wang L D and Mazumder P 2015 IEEE Trans. Neural Networks Learn. Sys. 26 1202
[28] Park S, Chu M, Kim J, Noh J, Jeon M, Hun Lee B, Hwang H, Lee B and Lee B G 2015 Sci. Rep. 5 10123
[29] Hansen M, Zahari F, Ziegler M and Kohlstedt H 2017 Front. Neurosci. 11 91
[30] Liu Q, Wang L D, Yang J, Wang Y and Duan S K 2017 J. Circuits Syst. Comput. 26 1750161
[31] Liu L, Xiong W, Liu Y X, Chen K G, Xu Z, Zhou Y, Han J, Ye C, Chen X, Song Z T and Zhu M 2020 Adv. Electron. Mater. 6 1901012
[32] Prezioso M, Merrikh Bayat F, Hoskins B D, Adam G C, Likharev K K and Strukov D B 2015 Nature 521 61
[33] Covi E, Brivio S, Serb A, Prodromakis T, Fanciulli M and Spiga S 2016 Front. Neurosci. 10 482
[34] Zamarreno Ramos C, Camunas Mesa L, Perez Carrasco J, Masquelier T, Serrano Gotarredona T and Linares Barranco B 2011 Front. Neurosci. 5 26
[35] Serb A, Bill J, Khiat A, Berdan R, Legenstein R and Prodromakis T 2016 Nat. Commun. 7 12611
[36] Hu X F, Feng G, Duan S K and Liu L 2017 IEEE Trans. Neural Networks Learn. Sys. 28 1889
[37] Dou G, Yu Y, Guo M, Zhang Y M, Sun Z and Li Y X 2017 Chin. Phys. Lett. 34 126
[38] Zhang Y M, Dou G, Sun Z, Guo M and Li Y X 2017 Int. J. Bifurcation Chaos 27 1750148
[39] Chang T, Jo S H, Kim K H, Sheridan P, Gaba S and Lu W 2011 Appl. Phys. A 102 857
[40] Meng F Y, Duan S K, Wang L D, Hu X F and Dong Z K 2015 Acta Phys. Sin. 64 148501 (in Chinese)
[41] Li Y, Zhong Y P, Zhang J J, Xu L, Wang Q, Sun H J, Tong H, Cheng X M and Miao X S 2014 Sci. Rep. 4 4906
[42] Liu G, Wang C, Zhang W B, Pan L, Zhang C C, Yang X, Fan F, Chen Y and Li R W 2016 Adv. Electron. Mater. 2 1500298
[43] Xiao Z G and Huang J S 2016 Adv. Electron. Mater. 2 1600100
[44] Mori M, Abegg M H, Gahwiler B H and Gerber U 2004 Nature 431 453
[45] Byrne J H and Hawkins R D 2015 CSH Perspect. Biol. 7 a021675
[46] Van De Burgt Y, Lubberman E and Fuller E J 2017 Nat. Mater. 16 414
[1] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[2] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄), Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[3] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[4] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[5] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[6] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[7] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[8] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[9] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[10] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[11] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[12] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[13] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[14] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[15] SBT-memristor-based crossbar memory circuit
Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚). Chin. Phys. B, 2021, 30(6): 068402.
No Suggested Reading articles found!