Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120702    DOI: 10.1088/1674-1056/ac0522
GENERAL Prev   Next  

Design of a novel correlative reflection electron microscope for in-situ real-time chemical analysis

Tian-Long Li(李天龙)1, Zheng Wei(魏征)2, and Wei-Shi Wan(万唯实)1,†
1 School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China;
2 College of Materials Science and Engineering, Chongqing University, Chongqing 401331, China
Abstract  A novel instrument that integrates reflection high energy electron diffraction (RHEED), electron energy loss spectroscopy (EELS), and imaging is designed and simulated. Since it can correlate the structural, elemental, and spatial information of the same surface region via the simultaneously acquired patterns of RHEED, EELS, and energy-filtered electron microscopy, it is named correlative reflection electron microscopy (c-REM). Our simulation demonstrates that the spatial resolution of this c-REM is lower than 50 nm, which meets the requirements for in-situ monitoring the structural and chemical evolution of surface in advanced material.
Keywords:  reflection high energy electron diffraction (RHEED)      electron energy loss spectroscopy (EELS)      parallel detection      energy-filtered electron microscopy  
Received:  25 March 2021      Revised:  01 May 2021      Accepted manuscript online:  26 May 2021
PACS:  07.77.Ka (Charged-particle beam sources and detectors)  
  07.78.+s (Electron, positron, and ion microscopes; electron diffractometers)  
  79.20.Uv (Electron energy loss spectroscopy)  
Fund: Project supported by the Shanghai Tech University and the National Natural Science Foundation of China (Grant No. 11774039).
Corresponding Authors:  Wei-Shi Wan     E-mail:  wanwsh@shanghaitech.edu.cn

Cite this article: 

Tian-Long Li(李天龙), Zheng Wei(魏征), and Wei-Shi Wan(万唯实) Design of a novel correlative reflection electron microscope for in-situ real-time chemical analysis 2021 Chin. Phys. B 30 120702

[1] Ingle N J C 2011 Inelastic scattering techniques for in situ characterization of thin film growth:backscatter Kikuchi diffraction. In Situ Characterization of Thin Film Growth (Woodhead Publishing) pp. 29-51
[2] Ingle N J C, Yuskauskas A, Wicks R, Paul M and Leung S 2010 J. Phys. D:Appl. Phys. 43 133001
[3] Baba-Kishi K Z 1990 Ultramicroscopy 34 205
[4] Müller B and Henzler M 1995 Rev. Sci. Instrum. 66 5232
[5] Hasegawa S, Ino S, Yamamoto Y and Daimon H 1985 Jpn. J. Appl. Phys. 24 L387
[6] Ahn C C, Yoshino H, Tambo T, Wong S S, He G, Taylor M E and Atwater H A 1997 Appl. Phys. Lett. 71 2653
[7] Berz M 2002 COSY INFINITY Version 8.1 Users Guide and Reference Manual (MSUHEP-20704) (Department of Physics and Astronomy, Michigan State University)
[8] Berz M 1989 Part. Accel. 24 109
[9] Schmid P, Feng J, Padmore H, Robin D, Rose H, Schlueter R and Wan W 2005 Rev. Sci. Instrum. 76 023302
[10] Herzog R 1935 Z. Phys. 97 596
[11] Hawkes P W (eds) 1982 Magnetic Electron Lenses (Springer-Verlag)
[12] Borse G J 1996 Numerical methods with MATLAB:A resource for scientists and engineers (International Thomson Publishing)
[1] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[2] Response of HD-V2 radiochromic film to argon ions
Lei Cheng(程蕾), Zhe Zhang(张喆), Guiyun Liang(梁贵云), and Yutong Li(李玉同). Chin. Phys. B, 2021, 30(8): 080702.
[3] Structure, conductivity, and ion emission properties of RbAg4I5 solid electrolyte film prepared by pulsed laser deposition
Jun-Lian Chen(陈军联), Wen-Bin Zuo(左文彬), Xian-Wen Ke(柯贤文), Alexander B Tolstoguzov, Can-Xin Tian(田灿鑫), Neena Devi, Ranjana Jha, Gennady N Panin, De-Jun Fu(付德君). Chin. Phys. B, 2019, 28(6): 060705.
[4] Radio-frequency compressed electron pulse-width characterization by cross-correlation between electron bunches and laser-induced plasma
Li Jing (李静), Pei Min-Jie (裴敏洁), Qi Da-Long (齐大龙), Qi Ying-Peng (齐迎朋), Yang Yan (杨岩), Sun Zhen-Rong (孙真荣). Chin. Phys. B, 2014, 23(12): 124209.
[5] Femtosecond electron pulse compression by using the time focusing technique in ultrafast electron diffraction
Wen Wen-Long(温文龙), Lei Xiao-Hong(雷晓红), Hu Xin(胡昕), Xu Xiang-Yan(徐向晏), Wang Jun-Feng(王俊锋), Cao Xi-Bin(曹希斌), Liu Hu-Lin(刘虎林), Wang Chao(王超), Dang Li-Hong(党利宏), and Tian Jin-Shou(田进寿) . Chin. Phys. B, 2011, 20(11): 114102.
[6] Passive magnetic shielded spin polarized electron source with optical electron polarimeter
Ding Hai-Bing(丁海兵), Pang Wen-Ning(庞文宁), Liu Yi-Bao(刘义保), and Shang Ren-Cheng(尚仁成). Chin. Phys. B, 2007, 16(1): 51-57.
[7] Elaborate calibration procedure for cell irradiation at the CAS-LIBB single-particle microbeam
Hu Zhi-Wen (胡智文), Ding Ke-Jian (丁克俭), Yu Liang-Deng (余量登), Zhang Jun (张俊), Wu Li-Jun (吴李君), Yu Zeng-Liang (余增亮). Chin. Phys. B, 2006, 15(4): 659-664.
[8] Experimental study on helium optical electron polarimetry
Ding Hai-Bing (丁海兵), Pang Wen-Ning (庞文宁), Liu Yi-Bao (刘义保), Shang Ren-Cheng (尚仁成). Chin. Phys. B, 2005, 14(12): 2440-2443.
No Suggested Reading articles found!