Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 016106    DOI: 10.1088/1674-1056/ac04aa
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions

Song-Guo Xi(奚松国)1, Qing-Yang Li(李青阳)1, Yan-Fei Hu(胡燕飞)2, Yu-Quan Yuan(袁玉全)1,†, Ya-Ru Zhao(赵亚儒)3, Jun-Jie Yuan(袁俊杰)1, Meng-Chun Li(李孟春)1, and Yu-Jie Yang(杨雨杰)1
1 School of Physics and Electronic Engineering, Sichuan University of Science&Engineering, Zigong 643000, China;
2 Department of Applied Physics, Chengdu University of Technology, Chengdu 610059, China;
3 College of Physics&Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China
Abstract  Divalent metal clusters have received great attention due to the interesting size-induced nonmetal-to-metal transition and fascinating properties dependent on cluster size, shape, and doping. In this work, the combination of the CALYPSO code and density functional theory (DFT) optimization is employed to explore the structural properties of neutral and anionic Mgn+1 and SrMgn (n=2-12) clusters. The results exhibit that as the atomic number of Mg increases, Sr atoms are more likely to replace Mg atoms located in the skeleton convex cap. By analyzing the binding energy, second-order energy difference and the charge transfer, it can be found the SrMg9 cluster with tower framework presents outstanding stability in a studied size range. Further, bonding characteristic analysis reveals that the stability of SrMg9 can be improved due to the strong s-p interaction among the atomic orbitals of Sr and Mg atoms.
Keywords:  SrMgn (n=2-12) clusters      CALYPSO code      density functional theory (DFT) optimization  
Received:  07 March 2021      Revised:  19 May 2021      Accepted manuscript online:  25 May 2021
PACS:  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404008), the Artificial Intelligence Key Laboratory of Sichuan Province, China (Grant No. 2018RYJ07), the Innovation Fund of Postgraduate Sichuan University of Science & Engineering, China (Grant Nos. y202007 and y2021008), the Innovation and Entrepreneurship Training Program of Sichuan Province, China (Grant Nos. S202010622080 and S202010622082), and the Innovation and Entrepreneurship Training Program of Sichuan University of Science & Engineering, China (Grant No. cx2019005).
Corresponding Authors:  Yu-Quan Yuan     E-mail:  yuquan_yuan@suse.edu.cn

Cite this article: 

Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰) Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions 2022 Chin. Phys. B 31 016106

[1] Akola J, Rytkönen K and Manninen M 2001 Eur. Phys. J. D 16 21
[2] Köhn A, Weigend F and Ahlrichs R 2001 Phys. Chem. Chem. Phys. 3 711
[3] Jellinek J and Acioli P H 2002 J. Phys. Chem. A 106 10919
[4] Thomas O C, Zheng W, Xu S, Bowen K H and Shiloh J M 2002 Phys. Rev. Lett. 89 213403
[5] Janecek S, Krotscheck E, Liebrecht M and Wahl R 2011 Eur. Phys. J. D 63 377
[6] Xia X X, Hermann A, Kuang X Y, Jin Y Y, Lu C and Xing X D 2016 J. Phys. Chem. A 120 7947
[7] Belyaev S N, Panteleev S V, Ignatov S K and Razuvaev A G 2016 Comput. Theor. Chem. 1079 34
[8] Axel B D 1998 J. Chem. Phys. 98 5648
[9] Li Y S, Sun L X, Zhou X, Chen K and Wang H Y 2020 Acta Phys. Sin. 69 013101 (in Chinese)
[10] Cai M Y, Tang C M and Zhang Q Y 2019 Acta Phys. Sin. 68 213601 (in Chinese)
[11] Yin M, Zhang M, Lü J and Wu H S 2019 Acta Phys. Sin. 68 203102 (in Chinese)
[12] Wang S J, Kuang X Y, Lu C, Li Y F and Zhao Y R 2011 Phys. Chem. Chem. Phys. 13 10119
[13] Kuang X J, Wang X Q and Liu G B 2013 J. Alloys Compd. 570 46
[14] Zhu B C, Zhang S and Zeng L 2020 Int. J. Quantum Chem. 120 e26143
[15] Zhang F G, Zhang H R, Xin W, Chen P, Hu Y F and Zhao Y R 2020 Sci. Rep. 10 6052
[16] Kang D L, Sun W G, Shi H X, Lu C, Chen B L and Maroulis G 2019 Sci. Rep. 9 14367
[17] Xu K M, Huang T, Liu Y R, Jiang S, Zhang Y, Lv Y Z, Gai Y B and Huang W 2015 Chem. Phys. 456 13
[18] Li J, Liu X Y, Zhu Z H and Sheng Y 2012 Chin. Phys. B 21 33101
[19] Zhang J T, Li J and Sheng Y 2014 Chin. Phys. B 23 013103
[20] Shi S P, Zhang C Y, Zhao X F, Li X, Yan M and Jiang G 2017 Chin. Phys. B 26 083103
[21] Gu X N, Xie X H, Li N, Zheng Y F and Qin L 2012 Acta Biomater. 8 2360
[22] Bornapour M, Mahjoubi H, Vail H, Shum-Tim D and Pekgieryuz 2016 Mater. Sci. Eng. C 67 72
[23] Wang Y C, Lv J, Li Z and Ma Y 2012 Comput. Phys. Commun. 183 2063
[24] Wang Y C, Miao M S, Lv J, Zhu L, Yin K, Liu H and Ma Y 2012 J. Chem. Phys. 137 224108
[25] Zhang X Y, Qin J Q, Sun X W, Xue Y N and Liu R P 2013 Phys. Chem. Chem. Phys. 15 20894
[26] Zhang M G, Yan H Y, Wei Q and Wang H 2013 Comput. Mater. Sci. 68 371
[27] Ju M, Lv J, Kuang X Y, Ding L P and Maroulis G 2014 RSC Adv. 5 6560
[28] Yang C, Jia S H, Ma M F, Zhang S, Lu C and Li G Q 2015 Eur. Phys. J. D 69 244
[29] Li C G, Li H J, Cui Y Q, Tian H, Shao Q Q, Zhang J, Zhao G, Ren B Z and Hu Y F 2021 J. Mol. Liq. 339 116764
[30] Li C G, Shen Z G, Zhang J, Cui Y Q, Li J J, Xue X Y, Li H F, Ren B Z and Hu Y F 2020 New J. Chem. 44 5109
[31] Tian Y H, Sun W G, Chen B L, Jin Y Y and Lu C 2019 Chin. Phys. B 28 103104
[32] Li L, Cui X H, Cao H, Cao H B, Jiang Y, Duan H M, Jing Q, Liu J and Wang Q 2020 Chin. Phys. B 29 077101
[33] Hay P J and Wadt W R 1985 J. Chem. Phys. 82 299
[34] Krishnan R, Binkley J S, Seeger R and Pople J A 1980 J. Chem. Phys. 72 650
[35] Frisch M J, Trucks G W, Schlegel H B, et al. 2013 Gaussian 09, Revision D.01; Gaussian, Inc., Wallingford CT
[36] Fuentealba P, Szentpaly L V and Preuss H 1985 J. Phys. B: At. Mol. Phys. 18 1287
[37] Akola J, Manninen M and Häkkinen H 1999 Phys. Rev. B 60 R11297
[38] Lu T and Chen F 2012 J. Comput. Chem. 33 580
[39] Zubarev D Y and Boldyrev A I 2008 Phys. Chem. Chem. Phys. 10 5207
[40] Acioli P H and Jellinek J 2002 Phys. Rev. Lett. 89 213402
[41] Lyalin A, Solov'yov I A, Solov'yov A V and Greiner W 2003 Phys. Rev. A 67 063203
[42] Heidari I, De S, Ghazi S M, Goedecker S and Kanhere D G 2011 J. Phys. Chem. A 115 12307
[43] Zhao Y R, Zhang H R, Qian Y, Duan X C and Hu Y F 2015 Mol. Phys. 114 784
[44] Xing X D, Wang J J, Kuang X Y, Xia X X, Lu C and Maroulis G 2016 Phys. Chem. Chem. Phys. 18 26177
[45] Issendorff B V and Cheshnovsky O 2005 Ann. Rev. Phys. Chem. 56 549
[46] Xia X X, Hermann, Kuang X Y, Jin Y Y, Lu C and Xing X D 2015 J. Phys. Chem. C 120 677
[47] Zhang J M, Duan Y N, Xu K W, Ji V and Man Z Y 2008 Physica B 403 3119
[48] Jin S Y, Chen B L, Kuang X Y, Lu C and Gutsev G L 2019 J. Phys.: Condes. Matter 31 485302
[49] Ding L P, Kuang X Y, Shao P, Zhao Y R and Li Y F 2012 Chin. Phys. B 21 043601
[50] Zhao Y R, Zhang H R, Zhang M G, Zheng B B and Kuang X Y 2013 Mol. Phys. 112 972
[51] De S, Ghasemi S A, Willand A, Genovese L, Kanhere D and Goedecker S 2011 J. Chem. Phys. 134 124302
[52] Kong F J and Hu Y F 2014 J. Mol. Model. 20 2087
[53] Zhao Y R, Kuang X Y, Shao P, Li C G, Wang S J and Li Y F 2012 J. Mol. Model. 18 1333
[54] Sun H R, Kuang X Y, Li Y F, Shao P and Zhao Y R 2012 Chin. Phys. B 21 083601
[55] Zhang S, Jiang H L, Wang P, Lu C, Li G Q and Zhang P 2013 Chin. Phys. B 22 123601
[56] Zhang S, Zhang Y, Yang Q X, Li G Q and Lu Z W 2019 New J. Chem. 43 10030
[57] Zhang L H, Xia X X, Sun W G, Lu C, Kuang X Y, Chen B L and Maroulis G 2018 Sci. Rep. 8 6702
[58] Zhao Y R, Xu Y Q, Chen P, Yuan Y Q, Qian Y and Li Q 2021 Results Phys. 26 104341
[59] Reed A E, Weinstock R B and Weinhold F 1985 J. Chem. Phys. 83 735
[1] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[2] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[3] Room temperature NO2 gas sensing of Au-loaded tungsten oxide nanowires/porous silicon hybrid structure
Deng-Feng Wang(王登峰), Ji-Ran Liang(梁继然), Chang-Qing Li(李昌青), Wen-Jun Yan(闫文君), Ming Hu(胡明). Chin. Phys. B, 2016, 25(2): 028102.
[4] Growth of PbS nanoclusters on specific sites of programmed oligodeoxynucleotides
Lu Ying (陆颖), Teng Cui-Juan (滕翠娟), Li Ying (李颖), Wang Hui (王惠), Xu Chun-Hua (徐春华), Hu Shu-Xin (胡书新), Li Ming (李明). Chin. Phys. B, 2015, 24(1): 016101.
[5] Silicon micro-hemispheres with periodic nanoscale rings produced by the laser ablation of single crystalline silicon
Chen Ming (陈明), Li Shuang (李爽), Cui Qing-Qiang (崔清强), Liu Xiang-Dong (刘向东). Chin. Phys. B, 2013, 22(10): 106101.
[6] High stability of the goldalloy fullerenes:A density functional theory investigation of M12@Au20 (M=Na, Al, Ag, Sc, Y, La, Lu, and Au) clusters
Zhang Meng(张孟), Feng Xiao-Juan(冯晓娟), Zhao Li-Xia(赵丽霞), Zhang Hong-Yu(张红雨), and Luo You-Hua(罗有华) . Chin. Phys. B, 2012, 21(5): 056102.
[7] Hcp-icosahedron structural transformation induced by the change in Ag concentration during the freezing of (CoAg)561 clusters
Xiao Xu-Yang(肖绪洋) . Chin. Phys. B, 2012, 21(4): 046102.
[8] Icosahedral medium-range order formed in Mg70Zn30 metallic glass: a larger-scale molecular dynamics simulation
Hou Zhao-Yang(侯兆阳), Liu Rang-Su(刘让苏), Tian Ze-An(田泽安), and Wang Jin-Guo(王晋国). Chin. Phys. B, 2011, 20(6): 066102.
[9] Geometrical, energetic and electronic properties of Aun–(C3H6O)m complexes (n=3,5, m ≤ n): A density functional theory study
Li Ying-Chun(李迎春), Yang Chuan-Lu(杨传路), Sun Mei-Yu(孙美玉), Li Xiao-Xia(李晓霞),An Yi-Peng(安义鹏), and Wang Mei-Shan(王美山). Chin. Phys. B, 2010, 19(8): 083602.
[10] Angle-sensitive and fast photovoltage of silver nanocluster embeded ZnO thin films induced by 1.064-μm pulsed laser
Zhao Song-Qing(赵嵩卿), Yang Li-Min(杨立敏), Liu Wen-Wei(刘闻炜), Zhao Kun(赵昆), Zhou Yue-Liang(周岳亮), and Zhou Qing-Li(周庆莉). Chin. Phys. B, 2010, 19(8): 087204.
[11] Coalescence between Cu57 and Cu58 clusters at a room temperature: molecular dynamics simulations
Zhang Lin (张林), Li Wei (李蔚), Wang Shao-Qing (王绍青). Chin. Phys. B, 2010, 19(7): 073601.
[12] Stability of small Ni-Ti bimetallic clusters studied by density functional theory
Chen Zhen-Gang(陈振岗), Xie Zun(谢尊), Li You-Cheng(李有成), Ma Qing-Min(马庆敏), and Liu Ying(刘英). Chin. Phys. B, 2010, 19(4): 043102.
[13] Density-functional investigation of 3d,4d,5d impurity doped Au6 clusters
Zhang Meng(张孟), Feng Xiao-Juan(冯晓娟), Zhao Li-Xia(赵丽霞), He Li-Ming(贺黎明), and Luo You-Hua(罗有华). Chin. Phys. B, 2010, 19(4): 043103.
[14] Density functional theory study on Ni-doped MgnNi (= 1-7) clusters
Chen Xue-Feng(陈雪风), Zhang Yan(张岩), Qi Kai-Tian(齐凯天), Li Bing(李兵), Zhu Zheng-He(朱正和), and Sheng Yong(盛勇). Chin. Phys. B, 2010, 19(3): 033601.
[15] Geometric, stable and electronic properties of Aun-2Y2 (= 3-8) clusters
Qi Kai-Tian(齐凯天), Mao Hua-Ping(毛华平), Wang Hong-Yan(王红艳), and Sheng Yong(盛勇). Chin. Phys. B, 2010, 19(3): 033602.
No Suggested Reading articles found!