Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120509    DOI: 10.1088/1674-1056/ac04a9
GENERAL Prev   Next  

Stability analysis of hydro-turbine governing system based on machine learning

Yuansheng Chen(陈元盛) and Fei Tong(仝飞)
State Key Laboratory of Eco-hydraulic in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
Abstract  Hydro-turbine governing system is a time-varying complex system with strong non-linearity, and its dynamic characteristics are jointly affected by hydraulic, mechanical, electrical, and other factors. Aiming at the stability of the hydro-turbine governing system, this paper first builds a dynamic model of the hydro-turbine governing system through mechanism modeling, and introduces the transfer coefficient characteristics under different load conditions to obtain the stability category of the system. BP neural network is used to perform the machine study and the predictive analysis of the stability of the system under different working conditions is carried out by using the additional momentum method to optimize the algorithm. The test set results show that the method can accurately distinguish the stability category of the hydro-turbine governing system (HTGS), and the research results can provide a theoretical reference for the operation and management of smart hydropower stations in the future.
Keywords:  hydro-turbine governing system      stability      machine learning      dynamic model  
Received:  06 April 2021      Revised:  13 May 2021      Accepted manuscript online:  25 May 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  45.20.dh (Energy conservation)  
Corresponding Authors:  Yuansheng Chen     E-mail:  chenyuanshengants@163.com

Cite this article: 

Yuansheng Chen(陈元盛) and Fei Tong(仝飞) Stability analysis of hydro-turbine governing system based on machine learning 2021 Chin. Phys. B 30 120509

[1] Gao X, Chen D Y, Zhang H, Xu B B and Wang X Y 2018 Chin. Phys. B 27 128202
[2] Han Q S, Chen D Y and Zhang H 2017 Chin. Phys. B 26 128202
[3] Zhang Y N, Liu K H, Xian H Z and Du X Z 2018 Renew. Sust. Energ. Rev. 81 1269
[4] Shrestha U and Choi Y D 2020 J. Mech. Sci. Technol. 34 3647
[5] Yan D L, Zheng Y, Wang W Y and Chen Q J 2020 Appl. Math. Model. 89 731
[6] Li K and Y Han 2018 Trans. Inst. Meas. Control 40 903
[7] Qu F L and Guo W C 2021 Int. J. Electr. Power Energy Syst. 124 106336
[8] Guo P C, Zhang H and Sun L G 2020 Mod. Phys. Lett. B 34 2050125
[9] Lai X J, Li C S, Guo W C, Xu Y H and Li Y G 2019 Commun. Nonlinear Sci. Numer. Simul. 79 104919
[10] Li J L, Chen D Y, Zhang H and Liu J 2019 J. Comput. Nonlinear Dyn. 14 111003
[11] Manhas S, Tarerh S and Singh D 2020 Mod. Phys. Lett. B 34 2050366
[12] Liu T W, Sun S W, Liu H, An N and Zhou J X 2021 Mod. Phys. Lett. B 35 2150033
[13] Sidhu R K, Kumar R and Rana P S 2020 Mod. Phys. Lett. B 34 2050418
[14] Han W, Liu Y, Gong C Y, Su Y L, Guo P Y, Su M, Shi F X and Wei Z Z 2020 Mod. Phys. Lett. B 34 2050094
[15] Zhang H, Guo P C and Sun L G 2020 Renew. Energy 152 34
[16] Zhang Y Q, Xu Y H, Zheng Y, Rodriguez E F, Liu H W and Feng J 2019 Math. Probl. Eng. 2019 8262074
[17] Zhang H, Chen D Y, Wu C Z and Wang X Y 2018 Commun. Nonlinear Sci. Numer. Simul. 54 136
[18] Qian J, Zeng Y, Guo Y K and Zhang L X 2016 Nonlinear Dyn. 86 963
[19] Zhou J X, Karney B W, Hu M and Xu J C 2011 Proc. Inst. Mech. Eng. Part A-J. 225 1132
[20] Yu X, Zhang J and Miao D 2015 ASCE J. Hydraul. Eng. 141 05014010
[21] Zeng Y, Zhang L X, Guo Y K and Qian J 2015 Int. J. Control Autom. Syst. 13 867
[22] Guo H X, Wan F, Pan W W and Gu M Y 2021 J. Clean Prod. 288 125628
[23] Li L Y, Zhou J L, Wei T Q, Chen M S and Hu X S 2021 IEEE Trans. Comput. 70 581
[24] Huang L J, Xie G J, Zhao W D, Gu Y and Huang Y 2021 Complex Intell. Syst.
[1] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[2] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[3] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[4] A class of two-dimensional rational maps with self-excited and hidden attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超),Hai-Bo Jiang(姜海波), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(3): 030503.
[5] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[6] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[7] Theoretical study of novel B-C-O compoundswith non-diamond isoelectronic
Chao Liu(刘超) and Pan Ying(应盼). Chin. Phys. B, 2022, 31(2): 026201.
[8] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[9] Dependence of short channel length on negative/positive bias temperature instability (NBTI/PBTI) for 3D FinFET devices
Ren-Ren Xu(徐忍忍), Qing-Zhu Zhang(张青竹), Long-Da Zhou(周龙达), Hong Yang(杨红), Tian-Yang Gai(盖天洋), Hua-Xiang Yin(殷华湘), and Wen-Wu Wang(王文武). Chin. Phys. B, 2022, 31(1): 017301.
[10] An extended smart driver model considering electronic throttle angle changes with memory
Congzhi Wu(武聪智), Hongxia Ge(葛红霞), and Rongjun Cheng(程荣军). Chin. Phys. B, 2022, 31(1): 010504.
[11] Identification of unstable individuals in dynamic networks
Dongli Duan(段东立), Tao Chai(柴涛), Xixi Wu(武茜茜), Chengxing Wu(吴成星), Shubin Si(司书宾), and Genqing Bian(边根庆). Chin. Phys. B, 2021, 30(9): 090501.
[12] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[13] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[14] Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system
Kuan-Lin Mu(穆宽林), Xing Chen(陈星), Zheng-Kang Wang(王正康), Yao-Jun Qiao(乔耀军), and Song Yu(喻松). Chin. Phys. B, 2021, 30(7): 074208.
[15] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
No Suggested Reading articles found!