Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087102    DOI: 10.1088/1674-1056/ac04a5

High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz

Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃)
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  Ultra-thin barrier (UTB) 4-nm-AlGaN/GaN normally-off high electron mobility transistors (HEMTs) having a high current gain cut-off frequency (fT) are demonstrated by the stress-engineered compressive SiN trench technology. The compressive in-situ SiN guarantees the UTB-AlGaN/GaN heterostructure can operate a high electron density of 1.27×1013cm-2, a high uniform sheet resistance of 312.8 Ω /□, but a negative threshold for the short-gate devices fabricated on it. With the lateral stress-engineering by full removing in-situ SiN in the 600-nm SiN trench, the short-gated (70 nm) devices obtain a threshold of 0.2 V, achieving the devices operating at enhancement-mode (E-mode). Meanwhile, the novel device also can operate a large current of 610 mA/mm and a high transconductance of 394 mS/mm for the E-mode devices. Most of all, a high fT/fmax of 128 GHz/255 GHz is obtained, which is the highest value among the reported E-mode AlGaN/GaN HEMTs. Besides, being together with the 211 GHz/346 GHz of fT/fmax for the D-mode HEMTs fabricated on the same materials, this design of E/D-mode with the realization of fmax over 200 GHz in this work is the first one that can be used in Q-band mixed-signal application with further optimization. And the minimized processing difference between the E- and D-mode designs the addition of the SiN trench, will promise an enormous competitive advantage in the fabricating costs.
Keywords:  ultra-thin barrier (UTB)      AlGaN/GaN      in-situ SiN      stress-engineering      enhancement-mode      mixed-signal applications  
Received:  06 April 2021      Revised:  01 May 2021      Accepted manuscript online:  25 May 2021
PACS:  71.55.Eq (III-V semiconductors)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB1804902), the National Natural Science Foundation of China (Grant No. 61904135), the China Postdoctoral Science Foundation (Grant Nos. 2018M640957 and BX20200262), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JQ-316).
Corresponding Authors:  Minhan Mi     E-mail:

Cite this article: 

Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃) High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz 2021 Chin. Phys. B 30 087102

[1] Chung J W, Hoke W E, Chumbes E M and Palacios T 2010 Electron Dev. Lett. 31 195
[2] Wu S B, Gao J F, Wang W B and Zhang J Y 2016 Trans. Electron Dev. 63 3882
[3] Corrion A L, Shinohara K, Regan D, Milosavljevic I, Hashimoto P, Willadsen P. J, Schmitz A, Wheeler D C, Butler C M, Brown D, Burnham S D and Micovic M 2010 Electron Dev. Lett. 31 1116
[4] Hu Z Y, Yue Y Z, Zhu M D Zhu, Song B, Ganguly S, Bergman J, Jena D and Xing H L 2014 Appl. Phys. Express 7 031002
[5] Han P C, Wu C H, Ho Y H, Yan Z Z and Chang E Y 2019 Proceedings of the 31st Intenational Symposium on Power Semiconductor Device & ICs, May 19-23, 2019, Shanghai, China, p. 427
[6] Wen Y H, He Z Y, Li J L, Luo R H, Xiang P, Deng Q Y, Xu G N, Shen Z, Wu Z S, Zhang B J, Jiang H, Wang G and Liu Y 2011 Appl. Phys. Lett. 98 072108
[7] Wan R H, Liu X, Lian C X, Gao X, Guo S P, Snider G, Fay P, Jena D and Xing H L 2010 Electron Dev. Lett. 31 1383
[8] Cheng Z, Zhang Y, Zhang L, Zhao Y B, Wang J X and Li J M 2016 13th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors, January 5-12, 2017, Beijing, China, p. 72
[9] Huang S, Liu X Y, Wang X H, Kang X W, Zhang J H, Bao Q L, Wei K, Zheng Y K, Zhao C, Gao H W, Sun Q, Zhang Z F and Chen K J 2016 Electron Dev. Lett. 37 1617
[10] Derluyn J, Boeykens S, Cheng K, Vandersmissen R, Das J, Ruythooren W, Degroote S, Leys M R, Germain M and Borghs G 2005 J. Appl. Phys. 98 054501
[11] Dogmus E, Kabouche R, Linge A, Okada E, Zegaoui M and Medjdoub F 2017 Phys. Status Solidi A 214 1600797
[12] Cheng W C, Lei S Q, Li W M, Zhao F, Chan M and Yu H Y 2019 Electron Devices Technology and Manufacturing Conference, March 12-15, 2019, Singapore, p. 19739002
[13] Cheng W C, Fang T, Lei S Q, Zhao Y L, He M H, Chan M, Xia G R, Zhao F and Yu H Y 2019 IEEE International Conference on Electron Devices and Solid-State Circuits, July 12-14, 2019, Xi'an China, p. 18864091
[14] Kuball M 2001 Surf. Interface Anal. 31 987
[15] Endoh A, Yamashita Y, Ikeda K, Higashiwaki M, Hikosaka K, Matsui T, Hiyamizu S and Mimura T 2004 Jpn. J. Appl. Phys. 43 2255
[16] Lanford W B, Tanaka T, Otoki Y and Adesida I 2005 Electron. Lett. 7 449
[17] Palacios T, Chakraborty C S Sus, Chakraborty A, Keller S, DenBaars S P and Mishra U K 2006 Electron Dev. Lett. 6 428
[18] Higashiwaki M, T Mimura T and Matsui T 2007 Trans. Electron Dev. 54 1566
[19] Maroldt S, Haupt C, Pletschen W, Muller S, Quay R, Ambacher O, Schippel C and Schwierz F 2009 Jpn. J. Appl. Phys. 48 04C083
[20] Cai Y, Zhou Y G, Chen K J and Lau K M 2005 Electron Dev. Lett. 26 435
[21] Feng Z H, Zhou R, Xie S Y, Yin J Y Fang J X, Liu B, Zhou W, Chen K J and Cai S J 2010 Electron Dev. Lett. 31 1386
[22] Huang T D, Liu Z J, Zhu X L Ma J, Lu X and Lau K M 2013 Trans. Electron Dev. 60 3019
[23] Brown D F, Shinohara K, Corrion A L, Chu R M, Willianms A, Wong J C, Alvarado-Rodriguez I, Grabar R, Johnson M, Butler C M, Santos D, Burnham S D, Robinson J F, Zehnder D, Kim S J, Oh T C and Micovic M 2013 Electron Dev. Lett. 34 111
[24] Huang S, Liu X Y, Zhang J H, Wei K, Liu G G, Wang X H, Zheng Y K, Liu H G, Jin Z, Zhao C, Liu C, Liu S H, Yang S, Zhang J C, Hao Y and Chen K J 2015 Electron Dev. Lett. 36 754
[25] Gao T, Xu R, Kong Y C, Zhou J J, Zhang K, Kong C, Peng D Q and Chen T S 2016 Phys. Status Solidi A 213 1241
[26] Yang L, Mi M H, Hou B, Zhu J J, Zhang M, Lu Y, He Y L, Zhu Q, Chen L X, Zhou X W, Lv L, Cao Y R, Ma X H and Hao Y 2017 Trans. Electron Dev. 64 4057
[27] Mi M H, Ma X H, Yang L, Hou B, Zhu J J, He Y L, Zhang M, Wu S and Hao Y 2017 Appl. Phys. Lett. 111 173502
[28] Hou B, Ma X H, Yang L, Zhu J J, Zhu Q, Chen L X, Mi M H, Zhang H S, Zhang M, Zhang P, Zhou X W and Hao Y 2017 Appl. Phys. Express 7 076501
[1] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[2] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[3] Distribution of donor states on the surface of AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[4] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[5] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[6] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
[7] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
[8] In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT
Min-Han Mi(宓珉瀚), Sheng Wu(武盛), Ling Yang(杨凌), Yun-Long He(何云龙), Bin Hou(侯斌), Meng Zhang(张濛), Li-Xin Guo(郭立新), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047104.
[9] Interface and border trapping effects in normally-off Al2O3/AlGaN/GaN MOS-HEMTs with different post-etch surface treatments
Si-Qi Jing(荆思淇), Xiao-Hua Ma(马晓华), Jie-Jie Zhu(祝杰杰)†, Xin-Chuang Zhang(张新创), Si-Yu Liu(刘思雨), Qing Zhu(朱青), and Yue Hao(郝跃). Chin. Phys. B, 2020, 29(10): 107302.
[10] Method of evaluating interface traps in Al2O3/AlGaN/GaN high electron mobility transistors
Si-Qin-Gao-Wa Bao(包斯琴高娃), Xiao-Hua Ma(马晓华), Wei-Wei Chen(陈伟伟), Ling Yang(杨凌), Bin Hou(侯斌), Qing Zhu(朱青), Jie-Jie Zhu(祝杰杰), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(6): 067304.
[11] Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Xiao-Can Peng(彭晓灿). Chin. Phys. B, 2019, 28(4): 047302.
[12] 1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor
Sheng-Lei Zhao(赵胜雷), Zhi-Zhe Wang(王之哲), Da-Zheng Chen(陈大正), Mao-Jun Wang(王茂俊), Yang Dai(戴扬), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(2): 027301.
[13] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[14] Negative transconductance effect in p-GaN gate AlGaN/GaN HEMTs by traps in unintentionally doped GaN buffer layer
Mei Ge(葛梅), Qing Cai(蔡青), Bao-Hua Zhang(张保花), Dun-Jun Chen(陈敦军), Li-Qun Hu(胡立群), Jun-Jun Xue(薛俊俊), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(10): 107301.
[15] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[2] He Lun-hua, Zhang Pan-lin, Yan Qi-wei. CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES OF La1.2Sr1.8-xCaxMn2O7[J]. Chin. Phys., 2001, 10(9): 853 -856 .
[3] Chen Ju-Hua, Wang Yong-Jiu. Chaos in a gravitational field with dipoles[J]. Chin. Phys., 2003, 12(8): 836 -840 .
[4] Hu Mu-Hong, Wang Zhi-Wen. Behaviours of the excited states 1s2np along lithium isoelectronic sequence from Z=11 to 20[J]. Chin. Phys. B, 2008, 17(3): 908 -914 .
[5] Wang Yan, Qin Wei-Ping, Di Wei-Hua, Zhang Ji-Sen, Cao Chun-Yan. Infrared-to-visible and infrared-to-violet upconversion fluorescence of rare earth doped LaF3 nanocrystals[J]. Chin. Phys. B, 2008, 17(9): 3300 -3305 .
[6] Liu Hong-Xia, Zhang He-Ming, Hu Hui-Yong, Song Jiu-Xu. Structural feature and electronic property of an (8, 0) carbon--silicon carbide nanotube heterojunction[J]. Chin. Phys. B, 2009, 18(2): 734 -737 .
[7] Guo Liu-Xiao, Hu Man-Feng, Xu Zhen-Yuan. Impulsive synchronization and control of directed transport in chaotic ratchets[J]. Chin. Phys. B, 2010, 19(2): 20512 -020512 .
[8] Yan Hui, Yang Guo-Qing, Shi Tao, Wang Jin, Zhan Ming-Sheng. Production and guidance of pulsed atomic beams on chip[J]. Chin. Phys. B, 2010, 19(2): 23204 -023204 .
[9] Shen Xiao-Zhi, Yuan Ping, Liu Juan. Electric-dipole allowed (E1) and forbidden (E2, M1 and M2)transition probabilities of 4f for N+[J]. Chin. Phys. B, 2010, 19(5): 53101 -053101 .
[10] Zhao Juan, Xu Yan, Meng Qing-Tian. Investigation of isotope effects of dynamic properties for H(D) +OF reactions by the quasi-classical trajectory method[J]. Chin. Phys. B, 2010, 19(6): 63403 -063403 .