Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096104    DOI: 10.1088/1674-1056/ac0347
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size formed by laser irradiation

Xinxin Li(李欣欣)1,2,3, Zhen Deng(邓震)1,3,4,†, Sen Wang(王森)1,2,3, Jinbiao Liu(刘金彪)2,5, Jun Li(李俊)6, Yang Jiang(江洋)1,3, Ziguang Ma(马紫光)1,3, Chunhua Du(杜春花)1,3,4, Haiqiang Jia(贾海强)1,3,7, Wenxin Wang(王文新)1,3,7, and Hong Chen(陈弘)1,3,7,‡
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
4 The Yangtze River Delta Physics Research Center, Liyang 213000, China;
5 Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, China;
6 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
7 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  SiGe spheres with different diameters are successfully fabricated on a virtual SiGe template using a laser irradiation method. The results from scanning electron microscopy and micro-Raman spectroscopy reveal that the diameter and Ge composition of the SiGe spheres can be well controlled by adjusting the laser energy density. In addition, the transmission electron microscopy results show that Ge composition inside the SiGe spheres is almost uniform in a well-defined, nearly spherical outline. As a convenient method to prepare sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size, this technique is expected to be useful for SiGe-based material growth and micro/optoelectronic device fabrication.
Keywords:  SiGe      micro/nanospheres      laser irradiation  
Received:  07 April 2021      Revised:  15 May 2021      Accepted manuscript online:  20 May 2021
PACS:  61.72.uf (Ge and Si)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
  61.80.Ba (Ultraviolet, visible, and infrared radiation effects (including laser radiation))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62004218, 61991441, and 61804176), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB01000000), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2021005).
Corresponding Authors:  Zhen Deng, Hong Chen     E-mail:  zhen.deng@iphy.ac.cn;hchen@iphy.ac.cn

Cite this article: 

Xinxin Li(李欣欣), Zhen Deng(邓震), Sen Wang(王森), Jinbiao Liu(刘金彪), Jun Li(李俊), Yang Jiang(江洋), Ziguang Ma(马紫光), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘) Sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size formed by laser irradiation 2021 Chin. Phys. B 30 096104

[1] Ronda I B 2009 Surf. Sci. Rep. 64 47
[2] Shiraki Y and Usami N 2011 Silicon-Germanium (SiGe) Nanostructures 1st edn (UK: Woodhead), Part Ⅲ
[3] Aqua J N, Berbezier I, Favre L, Frisch T and Ronda A 2013 Phys. Rep. 522 59
[4] Naffouti M, David T, Benkouider A, Favre L, Cabie M, Ronda A, Berbezier I and Abbarchi M 2016 Nanotechnology 27 305602
[5] Brehm M, Lichtenberger H, Fromherz T and Springholz G 2011 Nanoscale Res. Lett. 6 70
[6] Lee E K, Tsybeskov L and Kamins T I 2008 Appl. Phys. Lett. 92 033110
[7] Li S, Huang X, Liu Q, Cao X, Huo F, Zhang H and Gan C L 2012 Nano Lett. 12 5565
[8] Bauer G and Schäffler F 2010 Phys. Status Solidi A 203 3496
[9] Mondiali V, Lodari M, Bordello M, Chrastina D and Bollani M 2016 Microelectron. Eng. 153 88
[10] Chang H T, Wu B L, Cheng S L, Lee T and Lee S W 2013 Nanoscale Res. Lett. 8 349
[11] Chang Y M, Jian S R and Juang J Y 2010 Nanoscale Res. Lett. 5 1456
[12] Zhang L, Golod S V, Deckardt E, Prinz V and Grutzmacher D 2004 Physica E 23 280
[13] Qi D F, Liu H H, Gao W, Sun Q Q, Chen S Y, Huang W, Li C and Lai H K 2013 J. Mater. Chem. C 1 6878
[14] Huang Z P, Wu Y, Fang H, Deng N, Ren T L and Zhu J 2006 Nanotechnol. 17 1476
[15] Hong S, Lee H, Yeo J and Ko S H 2016 Nano Today 11 547
[16] Palneedi H, Park J H, Maurya D, Peddigari M, Hwang G T, Annapureddy V, Kim J W, Choi J J, Hahn B D and Priya S 2018 Adv. Mater. 30 1705148
[17] Yu R X, Shibayama T, Meng X, Takayanagi S, Yoshida Y, Yatsu S and Watanabe S 2014 Appl. Surf. Sci. 289 274
[18] Gorb A, Korotchenkov O, Kuryliuk V, Medvid A, Mozolevskis G, Nadtochiy A and Podolian A 2015 Appl. Surf. Sci. 346 177
[19] Datta D P, Chettah A, Siva V, Kanjilal D and Sahoo P K 2018 Appl. Surf. Sci. 428 676
[20] Wang X, Ding Y, Yuan D J, Hong J I, Liu Y, Wong C P, Hu C G and Wang Z L 2012 Nano Res. 5 412
[21] Zhang W, Yang L Y, Shi Z W, Huo D Y, Peng C S, Yang X N and Miao L L 2018 Optoelectronic Devices and Integration VⅡ, Beijing, China, October 11-13, 2018, 108141M
[22] Nakashima T, Kikuchi T, Imokawa K, Nakamura D and Ikenoue H 2019 Synthesis and Photonics of Nanoscale Materials XVI, San Francisco, USA, February 2-3, 2019, 109070P
[23] Gaiduk P I, Prakopyeu S L, Hansen J L and Larsen A N 2009 Physica B 404 4701
[24] Qi D F, Huang S H, Wang L T, Shi M, Chen S Y and Grigoropoulos C P 2018 Mater. Lett. 211 250
[25] Wang S, Deng Z, Li X X, Li J, Li Y F, Xu R, Jiang Y, Ma Z G, Wang L, Du C H, Jiang H Q, Wang W X and Chen H 2020 Jpn. J Appl. Phys. 59 050904
[26] Bailey J, Weber E R, Opsal J and Rosencwaig A 1992 Phys. Rev. B 44 13116
[27] Liu Z T, Kim M, Narayanan V and Kan E C 2000 Superlattices Microst. 28 393
[28] Lee C H, Meteer J, Narayanan V and Kan, E C 2005 J. Electron. Mater. 34 1
[29] Groenen J, Carles R, Christiansen S, Albrecht M, Dorsch W, Strunk H P, Wawra H and Wagner G 1997 Appl. Phys. Lett. 71 3856
[30] Cazayous M, Groenen J, Demangeot F, Sirvin R, Caumont M, Remmele T, Albrecht M, Christiansen S, Becker M, Strunk H P and Wawra H 2002 J. Appl. Phys. 91 6772
[1] High crystalline quality of SiGe fin fabrication with Si-rich composition area using replacement fin processing
Ying Zan(昝颖), Yong-Liang Li(李永亮), Xiao-Hong Cheng(程晓红), Zhi-Qian Zhao(赵治乾), Hao-Yan Liu(刘昊炎), Zhen-Hua Hu(吴振华), An-Yan Du(都安彦), Wen-Wu Wang(王文武). Chin. Phys. B, 2020, 29(8): 087303.
[2] Gastroscopy-conjugated photoacoustic and ultrasonic dual-mode imaging for detection of submucosal gastric cancer: in vitro study
Huaqin Wu(吴华钦), Haiyang Song(宋海洋), Yudian Huang(黄玉钿), Zhifang Li(李志芳), Shulian Wu(吴淑莲), Xiaoman Zhang(章小曼), Hui Li(李晖). Chin. Phys. B, 2020, 29(6): 064205.
[3] Microstructure and ferromagnetism of heavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[4] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[5] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[6] Synergistic effect of total ionizing dose on single event effect induced by pulsed laser microbeam on SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Qi Guo(郭旗), Feng-Qi Zhang(张凤祁), Juan Feng(冯娟), Xin Wang(王信), Yin Wei(魏莹), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2018, 27(10): 108501.
[7] Improved high-frequency equivalent circuit model based on distributed effects for SiGe HBTs with CBE layout
Ya-Bin Sun(孙亚宾), Xiao-Jin Li(李小进), Jin-Zhong Zhang(张金中), Yan-Ling Shi(石艳玲). Chin. Phys. B, 2017, 26(9): 098502.
[8] Three-dimensional simulation of fabrication process-dependent effects on single event effects of SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Chao-Hui He(贺朝会), Hong-Xia Guo(郭红霞), Pei Li(李培), Bao-Long Guo(郭宝龙), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2017, 26(8): 088502.
[9] Extraction of temperature dependences of small-signal model parameters in SiGe HBT HICUM model
Ya-Bin Sun(孙亚宾), Jun Fu(付军), Yu-Dong Wang(王玉东), Wei Zhou(周卫), Wei Zhang(张伟), and Zhi-Hong Liu(刘志弘). Chin. Phys. B, 2016, 25(4): 048501.
[10] Effect of lateral structure parameters of SiGe HBTs on synthesized active inductors
Yan-Xiao Zhao(赵彦晓), Wan-Rong Zhang(张万荣), Xin Huang(黄鑫), Hong-Yun Xie(谢红云), Dong-Yue Jin(金冬月), Qiang Fu(付强). Chin. Phys. B, 2016, 25(3): 038501.
[11] A technique for simultaneously improving the product of cutoff frequency-breakdown voltage and thermal stability of SOI SiGe HBT
Qiang Fu(付强), Wan-Rong Zhang(张万荣), Dong-Yue Jin(金冬月), Yan-Xiao Zhao(赵彦晓), Xiao Wang(王肖). Chin. Phys. B, 2016, 25(12): 124401.
[12] Electronic structure of O-doped SiGe calculated by DFT+U method
Zong-Yan Zhao(赵宗彦), Wen Yang(杨雯), Pei-Zhi Yang(杨培志). Chin. Phys. B, 2016, 25(12): 127101.
[13] Single-event response of the SiGe HBT in TCAD simulations and laser microbeam experiment
Li Pei, Guo Hong-Xia, Guo Qi, Zhang Jin-Xin, Xiao Yao, Wei Ying, Cui Jiang-Wei, Wen Lin, Liu Mo-Han, Wang Xin. Chin. Phys. B, 2015, 24(8): 088502.
[14] Comparison of total dose effects on SiGe heterojunction bipolar transistors induced by different swift heavy ion irradiation
Sun Ya-Bin, Fu Jun, Xu Jun, Wang Yu-Dong, Zhou Wei, Zhang Wei, Cui Jie, Li Gao-Qing, Liu Zhi-Hong. Chin. Phys. B, 2014, 23(11): 116104.
[15] Collector optimization for tradeoff between breakdown voltage and cut-off frequency in SiGe HBT
Fu Qiang, Zhang Wan-Rong, Jin Dong-Yue, Ding Chun-Bao, Zhao Yan-Xiao, Lu Dong. Chin. Phys. B, 2014, 23(11): 114402.
[1] Hong Zhi, Huang Li-lei. ANALYSES FOR LASING THRESHOLD AT 2 AND 1.5μm WAVELENGTHS IN Tm:YVO4 CRYSTAL[J]. Chin. Phys., 2000, 9(1): 31 -36 .
[2] Ma Yong, Yang Li-Dong, Yang Hai, Yang Zhi. Influence of external field and particle size upon theoretical photoelectron emission spectral response of silver nano-particles embedded in BaO thin film[J]. Chin. Phys., 2005, 14(8): 1665 -1670 .
[3] Huang Ji-Ying, Li Ying-Le. The scattering fields for a spherical target irradiated by a plane electromagnetic wave in an arbitrary direction[J]. Chin. Phys., 2006, 15(2): 281 -285 .
[4] Xue Zheng-Yuan, Yi You-Min, Cao Zhuo-Liang. Scheme for sharing classical information via tripartite entangled states[J]. Chin. Phys., 2006, 15(7): 1421 -1424 .
[5] Chen Gui-Ying, Yuan Yi-Zhe, Liang Xin, Xu Tang, Zhang Chun-Ping, Song Qi-Wang. The behaviours of optical novelty filter based on bacteriorhodopsin film[J]. Chin. Phys., 2006, 15(9): 2007 -2011 .
[6] Zhang Jian-Ming, Zou De-Shu, Xu Chen, Guo Wei-Ling, Zhu Yan-Xu, Liang Ting, Da Xiao-Li, Li Jian-Jun, Shen Guang-Di. AlGaInP thin-film LED with omni-directionally reflector and ITO transparent conducting n-type contact[J]. Chin. Phys., 2007, 16(11): 3498 -3501 .
[7] Zheng Jia-Jin, Zhang Gui-Lan, Guo Yang-Xue, Li Xiang-Ping, Chen Wen-Ju. All-optical switching and nonlinear optical properties of HBT in ethanol solution[J]. Chin. Phys., 2007, 16(4): 1047 -1051 .
[8] Yu Wen, Zhao Yan, Yang Dong-Sheng, Zhang Hua-Guang. A unified approach to fuzzy modelling and robust synchronization of different hyperchaotic systems[J]. Chin. Phys. B, 2008, 17(11): 4056 -4066 .
[9] Liu Su-Ping, Gong Jian, Hao Fan-Hua, Hu Guang-Chun. Template identification technology of nuclear warheads and components[J]. Chin. Phys. B, 2008, 17(2): 363 -369 .
[10] Zhang Kai-Wang. Quantum diffusion in semi-infinite periodic and quasiperiodic systems[J]. Chin. Phys. B, 2008, 17(3): 1113 -1118 .