Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 070311    DOI: 10.1088/1674-1056/ac00a3
Special Issue: SPECIAL TOPIC — Twistronics
SPECIAL TOPIC—Twistronics Prev   Next  

Projective representation of D6 group in twisted bilayer graphene

Noah F. Q. Yuan
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Abstract  Within the framework of continuum model, we study the projective representation of emergent D6 point group in twisted bilayer graphene. We then construct tight-binding models of the lowest bands without and with external electromagnetic fields, based on the projective representation.
Keywords:  twisted bilayer graphene      tight-binding model      projective representation  
Received:  12 May 2020      Revised:  02 February 2021      Accepted manuscript online:  13 May 2021
PACS:  03.65.Fd (Algebraic methods)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.23.An (Theories and models; localized states)  
  73.21.Cd (Superlattices)  
Fund: Project supported by DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526.
Corresponding Authors:  Noah F. Q. Yuan     E-mail:  nfqyuan@mit.edu,fyuanaa@connect.ust.hk

Cite this article: 

Noah F. Q. Yuan Projective representation of D6 group in twisted bilayer graphene 2021 Chin. Phys. B 30 070311

[1] Cao Y, Fatemi V, Fang S, et al. 2018 Nature 556 43
[2] Cao Y, Fatemi V, Demir A, et al. 2018 Nature 556 80
[3] Yankowitz M, Chen S, Polshyn H, et al. 2019 Science 363 1059
[4] Xu C and Balents L 2018 Phys. Rev. Lett. 121 087001
[5] Po H C, Zou L, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 031089
[6] Yuan N F Q and Fu L 2018 Phys. Rev. B 98 045103
[7] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087
[8] Kang J and Vafek O 2018 Phys. Rev. X 8 031088
[9] Isobe H, Yuan N F Q and Fu L 2018 Phys. Rev. X 8 041041
[10] Zou L, Po H C, Vishwanath A and Senthil T 2018 Phys. Rev. B 98 085435
[11] Roy B and Juricic V 2019 Phys. Rev. B 99 121407
[12] Guo H, Zhu X, Feng S and Scalettar R T 2018 Phys. Rev. B 97 235453
[13] Padhi B, Setty C and Phillips P W 2018 Nano Lett. 18 6175
[14] Dodaro J F, Kivelson S A, Schattner Y, Sun X Q and Wang C 2018 Phys. Rev. B 98 075154
[15] Huang T, Zhang L and Ma T 2019 Science Bulletin 64 310
[16] Zhang L 2019 Science Bulletin 64 495
[17] Ray S and Das T 2019 Phys. Rev. B 99 134515
[18] Liu C C, Zhang L D, Chen W Q and Yang F 2018 Phys. Rev. Lett. 121 217001
[19] Xu X Y, Law K T and Lee Patrick A 2018 Phys. Rev. B 98 121406
[20] Peltonen T J, Ojajärvi R and Heikkilä T T 2018 Phys. Rev. B 98 220504
[21] Fidrysiak M, Zegrodnik M and Spałek J 2018 Phys. Rev. B 98 085436
[22] Po H C, Zou L, Senthil T and Vishwanath A 2019 Phys. Rev. B 99 195455
[23] Hejazi K, Liu C, Shapourian H, Chen X and Balents L 2019 Phys. Rev. B 99 035111
[24] Song Z, Wang Z, Shi W, Li G, Fang C and Bernevig B A 2019 Phys. Rev. Lett. 123 036401
[25] Ahn J, Park S and Yang B J 2019 Phys. Rev. X 9 021013
[26] Berger C, Song Z, Li X, et al. 2006 Science 312 1191
[27] Hass J, Feng R, Millan-Otoya J, Li X, Sprinkle M, First P, de Heer W, Conrad E and Berger C 2007 Phys. Rev. B 75 214109
[28] Hass J, Varchon F, Millan-Otoya J, Sprinkle M, Sharma N, de Heer W, Berger C, First P, Magaud L and Conrad E 2008 Phys. Rev. Lett. 100 125504
[29] Li G, Luican A, Lopes dos Santos J M B, Neto A, Reina A, Kong J and Andrei E 2009 Nat. Phys. 6 109
[30] Miller D, Kubista K, Rutter G, Ruan M, de Heer W, First P and Stroscio J 2010 Phys. Rev. B 81 125427
[31] Luican A, Li G, Reina A, et al. 2011 Phys. Rev. Lett. 106 126802
[32] Mele E 2010 Phys. Rev. B 81 161405
[33] Trambly de Laissardière G, Mayou D and Magaud L 2010 Nano Lett. 10 804
[34] Shallcross S, Sharma S, Kandelaki E and Pankratov O 2010 Phys. Rev. B 81 165105
[35] Morell E, Correa J, Vargas P, Pacheco M and Barticevic Z 2010 Phys. Rev. B 82 121407
[36] Kindermann M and First P 2010 Phys. Rev. B 83 045425
[37] Xian L, Barraza-Lopez S and Chou M 2011 Phys. Rev. B 84 075425
[38] Moon P and Koshino M 2012 Phys. Rev. B 85 195458
[39] de Laissardiere G T, Mayou D and Magaud L 2012 Phys. Rev. B 86 125413
[40] Moon P and Koshino M 2013 Phys. Rev. B 87 205404
[41] Nam N N T and Koshino M 2017 Phys. Rev. B 96 075311
[42] Lopes dos Santos J M B, Peres N and Castro Neto A 2007 Phys. Rev. Lett. 99 256802
[43] Bistritzer R and MacDonald A 2011 Proc. Natl. Acad. Sci. USA 108 12233
[44] Lopes dos Santos J M B, Peres N M R and Castro Neto A H 2012 Phys. Rev. B 86 155449
[1] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[2] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
[3] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
[4] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
Zedong Li(李泽东) and Z F Wang(王征飞)†. Chin. Phys. B, 2020, 29(10): 107101.
[5] Possible nodeless s±-wave superconductivity in twisted bilayer graphene
Zhe Liu(刘哲), Yu Li(李宇), Yi-Feng Yang(杨义峰). Chin. Phys. B, 2019, 28(7): 077103.
[6] One-dimensional method of investigating the localized states in armchair graphene-like nanoribbons with defects
Yang Xie(谢阳), Zhi-Jian Hu(胡智健), Wen-Hao Ding(丁文浩), Xiao-Long Lü(吕小龙), Hang Xie(谢航). Chin. Phys. B, 2017, 26(12): 127310.
[7] Curvature and Zeeman effects on persistent currents in a multi-walledcarbon nanotorus
Xu Ning, Ding Jian-Wen, Ma Ming-Ming, Tang Xian. Chin. Phys. B, 2010, 19(1): 016101.
[8] Persistent currents in three-dimensional shell-doped nanorings
Xu Ning, Ding Jian-Wen, Chen Hong-Bo, Ma Ming-Ming. Chin. Phys. B, 2009, 18(5): 2030-2034.
No Suggested Reading articles found!