Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 127101    DOI: 10.1088/1674-1056/ac009f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electric and thermal transport properties of topological insulator candidate LiMgBi

Hao OuYang(欧阳豪)1,2,†, Qing-Xin Dong(董庆新)1,2,†, Yi-Fei Huang(黄奕飞)1,2, Jun-Sen Xiang(项俊森)1, Li-Bo Zhang(张黎博)1,2, Chen-Sheng Li(李晨圣)1,2, Pei-Jie Sun(孙培杰)1,2,3, Zhi-An Ren(任治安)1,2,3, and Gen-Fu Chen(陈根富)1,2,3,‡
1 Institute of Physics, and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We report the transport properties of a topological insulator candidate, LiMgBi. The electric resistivity of the title compound exhibits a metal-to-semiconductor-like transition at around 160 K and tends to saturation below 50 K. At low temperatures, the magnetoresistance is up to ~260% at 9 T and a clear weak antilocalization effect is observed in the low magnetic-field region. The Hall measurement reveals that LiMgBi is a multiband system, where hole-type carriers (nh~1018 cm-3) play a major role in the transport process. Remarkably, LiMgBi possess a large Seebeck coefficient (~440 μV/K) and a moderate thermal conductivity at room temperature, which indicate that LiMgBi is a promising candidate in thermoelectric applications.
Keywords:  thermoelectric      topological insulator      crystal growth  
Received:  27 March 2021      Revised:  29 April 2021      Accepted manuscript online:  13 May 2021
PACS:  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  65.40.-b (Thermal properties of crystalline solids)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300604), the National Natural Science Foundation of China (Grant No. 11874417), and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB33010100).
Corresponding Authors:  Gen-Fu Chen     E-mail:  gfchen@iphy.ac.cn

Cite this article: 

Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富) Electric and thermal transport properties of topological insulator candidate LiMgBi 2021 Chin. Phys. B 30 127101

[1] Goldsmid H J 2010 Introduction to Thermoelectricity (Berlin:Springer) p. 46
[2] Tritt T M and Subramanian M A 2006 MRS Bull. 31 188
[3] DiSalvo F J 1999 Science 285 703
[4] Rowe D M 2018 CRC Handbook of Thermoelectrics (New York:CRC Press)
[5] Müchler L, Casper F, Yan B, Chadov S and Felser C 2013 Phys. Status Solidi RRL 7 91
[6] Takahashi R and Murakami S 2012 Semicond Sci. Technol. 27 124005
[7] Xu Y 2016 Chin. Phys. B 25 117309
[8] Fu C, Sun Y and Felser C 2020 APL Mater. 8 040913
[9] Xu N, Xu Y and Zhu J 2017 npj Quantum Mater. 2 1
[10] Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X A, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G and Ren Z F 2008 Science 320 634
[11] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[12] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[13] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480
[14] Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z, Felser C, Aroyo M I and Bernevig B A 2017 Nature 547 298
[15] Tang F, Po H C and Vishwanath A and Wan X 2019 Nature 566 486
[16] Sattigeri R M, Pillai S B, Jha P K and Chakraborty B 2020 Phys. Chem. Phys. 22 4602
[17] Yadav M K and Sanyal B 2015 J. Alloys Compd. 622 388
[18] Parsamehr S, Boochani A, Amiri M, Solaymani S, Sartipi E, Naderi S and Aminian A 2020 Philos. Mag. 101 369
[19] Toby B H 2001 J. Appl. Crystall. 34 210
[20] Bende D, Grin Y and Wagner F R 2014 Chemistry 20 9702
[21] Nowotny H and Holub F 1960 91 877
[22] Zhang X, Sun S S and Lei H C 2017 Phys. Rev. B 95 035209
[23] Ren Z, Taskin A, Sasaki S, Segawa K and Ando Y 2010 Phys. Rev. B 82 241306
[24] Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821
[25] Sun S, Wang Q, Guo P J, Liu K and Lei H C 2016 New J. Phys. 18 082002
[26] Tafti F, Gibson Q D, Kushwaha S K, Haldolaarachchige N and Cava R J 2016 Nat. Phys. 12 272
[27] Checkelsky J G, Hor Y S, Cava R J and Ong N P 2011 Phys. Rev Lett. 106 196801
[28] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W D, Cava R J and Ong N P 2015 Science 350 413
[29] Huang X C, Zhao L X, Long Y J, Wang P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023
[30] Isaeva A, Rasche B and Ruck M 2013 Phys. Status Solidi RRL 7 39
[31] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[32] Murakami S 2006 Phys. Rev. Lett. 97 236805
[33] Syers P and Paglione J 2017 Phys. Rev. B 95 045123
[34] Harman T C, Paris B, Miller S E and Goering H L 1957 J. Phys. Chem. Solids 2 181
[35] He J B, Chen D, Zhu W L, Zhang S, Zhao L X, Ren Z A and Chen G F 2017 Phys. Rev. B 95 195165
[36] Luo Y K, Li H, Dai Y M, Miao H, Shi Y G, Ding H, Taylor A J, Yarotski D A, Prasankumar R P and Thompson J D 2015 Appl. Phys. Lett. 107 182411
[37] Zhao L X, Xu Q N, Wang X M, He J B, Li J, Yang H X, Long Y J, Chen D, Liang H, Li C H, Xue M Q, Li J Q, Ren Z A, Lu L, Weng H M, Fang Z, Dai X and Chen G F 2017 Phys. Rev B 95 115119
[38] Shrestha K, Chou M, Graf D, Yang H D, Lorenz B and Chu C W 2017 Phys. Rev. B 95 195113
[39] Butch N P, Kirshenbaum K, Syers P, Sushkov A B, Jenkins G S, Drew H D and Paglione J 2010 Phys. Rev. B 81 241301
[40] Mi H X, Li H Y, Qiao C Y, Zhang T, Han L and Xu J 2020 Rare Metal. Mat. Eng. 49 2234
[41] Gao Y W, He Y Z and Zhu L L 2010 Chin. Sci. Bull. 55 16
[42] Champness C H, Chiang P T and Parekh P 1965 Can. J. Phys. 43 653
[43] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[1] Enhanced thermoelectric performance of PEDOT: PSS films via ionic liquid post-treatment
Jiaji Yang(杨家霁), Xuejing Li(李雪晶), Yanhua Jia(贾艳华), Jiang Zhang(张弜), and Qinglin Jiang(蒋庆林). Chin. Phys. B, 2022, 31(2): 027302.
[2] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[3] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[4] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[5] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[6] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[7] Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene)
Meng Li(李萌), Zuzhi Bai(柏祖志), Xiao Chen(陈晓), Cong-Cong Liu(刘聪聪), Jing-Kun Xu(徐景坤), Xiao-Qi Lan(蓝小琪), and Feng-Xing Jiang(蒋丰兴). Chin. Phys. B, 2022, 31(2): 027201.
[8] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[9] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
[10] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[11] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[12] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[13] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[14] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
[15] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
No Suggested Reading articles found!