Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 116802    DOI: 10.1088/1674-1056/ac0037

Realization of semiconducting Cu2Se by direct selenization of Cu(111)

Yumu Yang(杨雨沐), Qilong Wu(吴奇龙), Jiaqi Deng(邓嘉琦), Jing Wang(王静), Yu Xia(夏雨), Xiaoshuai Fu(富晓帅), Qiwei Tian(田麒玮), Li Zhang(张力), Long-Jing Yin(殷隆晶), Yuan Tian(田园), Sheng-Yi Xie(谢声意), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉)
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  Bulk group IB transition-metal chalcogenides have been widely explored due to their applications in thermoelectrics. However, a layered two-dimensional form of these materials has been rarely reported. Here, we realize semiconducting Cu2Se by direct selenization of Cu(111). Scanning tunneling microcopy measurements combined with first-principles calculations allow us to determine the structural and electronic properties of the obtained structure. X-ray photoelectron spectroscopy data reveal chemical composition of the sample, which is Cu2Se. The observed moiré pattern indicates a lattice mismatch between Cu2Se and the underlying Cu(111)-$\sqrt{3}$×$\sqrt{3}$ surface. Differential conductivity obtained by scanning tunneling spectroscopy demonstrates that the synthesized Cu2Se exhibits a band gap of 0.78 eV. Furthermore, the calculated density of states and band structure demonstrate that the isolated Cu2Se is a semiconductor with an indirect band gap of ~ 0.8 eV, which agrees quite well with the experimental results. Our study provides a simple pathway varying toward the synthesis of novel layered 2D transition chalcogenides materials.
Keywords:  Cu2Se      scanning tunneling microscopy      scanning tunneling spectroscopy      semiconducting      selenization  
Received:  28 April 2021      Revised:  06 May 2021      Accepted manuscript online:  12 May 2021
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772087, 11904094, 51972106, and 11804089), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and Natural Science Foundation of Hunan Province, China (Grant Nos. 2019JJ50034 and 2019JJ50073).
Corresponding Authors:  Lijie Zhang, Zhihui Qin     E-mail:;

Cite this article: 

Yumu Yang(杨雨沐), Qilong Wu(吴奇龙), Jiaqi Deng(邓嘉琦), Jing Wang(王静), Yu Xia(夏雨), Xiaoshuai Fu(富晓帅), Qiwei Tian(田麒玮), Li Zhang(张力), Long-Jing Yin(殷隆晶), Yuan Tian(田园), Sheng-Yi Xie(谢声意), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉) Realization of semiconducting Cu2Se by direct selenization of Cu(111) 2021 Chin. Phys. B 30 116802

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Xing S, Lei L, Dong H, Guo J, Cao F, Gu S, Hussain S, Pang F, Ji W, Xu R and Cheng Z 2020 Chin. Phys. B 29 096801
[3] Fan P, Zhang R Z, Qi J, Li E, Qian G J, Chen H, Wang D F, Zheng Q, Wang Q, Lin X, Zhang Y Y, Du S, Hofer W A and Gao H J 2020 Chin. Phys. B 29 098102
[4] Dong L, Wang A W, Li E, Wang Q, Li G, Huan Q and Gao H J 2019 Chin. Phys. Lett. 36 028102
[5] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[6] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[7] Wu Z B, Zhang Y Y, Li G, Du S and Gao H J 2018 Chin. Phys. B 27 077302
[8] Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S and Gao H J 2014 Adv. Mater. 26 4820
[9] Zhang L, Bampoulis P, Rudenko A N, Yao Q, van Houselt A, Poelsema B, Katsnelson M I and Zandvliet H J W 2016 Phys. Rev. Lett. 116 256804
[10] Deng J, Ablat G, Yang Y, Fu X, Wu Q, Li P, Zhang L, Safaei A, Zhang L and Qin Z 2021 J. Phys.: Condens. Matter. 33 225001
[11] Qin Z, Pan J, Lu S, Shao Y, Wang Y, Du S, Gao H J and Cao G 2017 Adv. Mater. 29 1606046
[12] Acun A, Zhang L, Bampoulis P, Farmanbar M, van Houselt A, Rudenko A N, Lingenfelder M, Brocks G, Poelsema B, Katsnelson M I and Zandvliet H J W 2015 J. Phys.: Condens. Matter 27 443002
[13] Qin Z H 2017 Acta Phys. Sin. 66 216802 (in Chinese)
[14] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[15] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J and Claessen R 2017 Science 357 287
[16] Molle A, Goldberger J, Houssa M, Xu Y, Zhang S C and Akinwande D 2017 Nat. Mater. 16 163
[17] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[18] Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T, Zhang Z, Xu L and Song B 2020 Adv. Mater. 33 1907818
[19] Wu Q, Fu X, Yang K, Wu H, Liu L, Zhang L, Tian Y, Yin L J, Huang W Q, Zhang W, Wong P K J, Zhang L, Wee A T S and Qin Z 2021 ACS Nano 15 4481
[20] Guo Q M and Qin Z H 2021 Acta Phys. Sin. 70 028101 (in Chinese)
[21] Zhang Y, Wang Y, Xi L, Qiu R, Shi X, Zhang P and Zhang W 2014 J. Chem. Phys. 140 074702
[22] Shah J, Sohail H M, Uhrberg R I G and Wang W 2020 J. Phys. Chem. Lett. 11 1609
[23] Unzelmann M, Bentmann H, Eck P, Kisslinger T, Geldiyev B, Rieger J, Moser S, Vidal R C, Kissner K, Hammer L, Schneider M A, Fauster T, Sangiovanni G, Di Sante D and Reinert F 2020 Phys. Rev. Lett. 124 176401
[24] Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S and Gao H J 2018 Adv. Mater. 30 1707055
[25] Lin X, Lu J C, Shao Y, et al. 2017 Nat. Mater. 16 717
[26] Guo Q, Zhong Y, Huang M, Lu S and Yu Y 2020 Thin Solid Films 693 137709
[27] Walen H, Liu D J, Oh J, Yang H J, Kim Y and Thiel P A 2016 Chemphyschem 17 2137
[28] Nishimura T, Toki S, Sugiura H, Nakada K and Yamada A 2016 Appl. Phys. Express 9 092301
[29] Nguyen M C, Choi J H, Zhao X, Wang C Z, Zhang Z and Ho K M 2013 Phys. Rev. Lett. 111 165502
[30] Qian K, Gao L, Chen X, et al. 2020 Adv. Mater. 32 1908314
[31] Wang Y, Li L, Yao W, Song S, Sun J, Pan J, Ren X, Li C, Okunishi E and Wang Y Q 2015 Nano Lett. 15 4013
[32] Zhang S, Song Y, Li J M, Wang Z, Liu C, Wang J O, Gao L, Lu J C, Zhang Y Y, Lin X, Pan J, Du S X and Gao H J 2020 Chin. Phys. B 29 077301
[33] Liu B, Zhuang Y, Que Y, Xu C and Xiao X 2020 Chin. Phys. B 29 056801
[34] Sun H, Liang Z, Shen K, Luo M, Hu J, Huang H, Zhu Z, Li Z, Jiang Z and Song F 2018 Appl. Surf. Sci. 428 623
[35] Blöchl P E 1994 Phys. Rev. B 50 17953
[36] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Shishkin M and Kresse G 2007 Phys. Rev. B 75 235102
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J 2012 Nat. Phys. 8 382
[41] Guo Q, Zhong Y, Huang M, Lu S and Yu Y 2020 Thin Solid Films 693 137709
[42] Chen H Y, Chen L, Lin J, Tan K L and Li J 1997 Inorg. Chem. 36 1417
[43] Chen X Q, Li Z, Bai Y, Sun Q, Wang L Z and Dou S X 2015 Chem. Eur. J. 21 1055
[44] Riha S C, Johnson D C and Prieto A L 2011 J. Am. Chem. Soc. 133 1383
[1] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[2] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[3] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[4] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[5] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[6] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[7] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[8] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[9] Triphenylene adsorption on Cu(111) and relevant graphene self-assembly
Qiao-Yue Chen(陈乔悦), Jun-Jie Song(宋俊杰), Liwei Jing(井立威), Kaikai Huang(黄凯凯), Pimo He(何丕模), Hanjie Zhang(张寒洁). Chin. Phys. B, 2020, 29(2): 026801.
[10] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[11] Josephson effect in the strontium titanate/lanthanum aluminate junction
Xing Yang(阳星), Jie Chen(陈杰), Yabin Yu(余亚斌), Quanhui Liu(刘全慧). Chin. Phys. B, 2019, 28(9): 097401.
[12] Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy
Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模). Chin. Phys. B, 2019, 28(7): 076801.
[13] Scanning tunneling microscopic investigation on morphology of magnetic Weyl semimetal YbMnBi2
Zhen Zhu(朱朕), Dong Yan(严冬), Xiao-Ang Nie(聂晓昂), Hao-Ke Xu(徐豪科), Xu Yang(杨旭), Dan-Dan Guan(管丹丹), Shiyong Wang(王世勇), Yao-Yi Li(李耀义), Canhua Liu(刘灿华), Jun-Wei Liu(刘军伟), Hui-Xia Luo(罗惠霞), Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(7): 077302.
[14] Topological superconductivity in a Bi2Te3/NbSe2 heterostructure: A review
Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(6): 067403.
[15] Epitaxial fabrication of two-dimensional TiTe2 monolayer on Au(111) substrate with Te as buffer layer
Zhipeng Song(宋志朋), Bao Lei(雷宝), Yun Cao(曹云), Jing Qi(戚竞), Hao Peng(彭浩), Qin Wang(汪琴), Li Huang(黄立), Hongliang Lu(路红亮), Xiao Lin(林晓), Ye-Liang Wang(王业亮), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(5): 056801.
No Suggested Reading articles found!