Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 070307    DOI: 10.1088/1674-1056/abff2a
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence

Bao-Min Li(李保民)1,2, Ming-Liang Hu(胡明亮)1, and Heng Fan(范桁)1,2,3,†
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We investigate the nonlocal advantage of quantum coherence (NAQC) and entanglement for two spins coupled via the Heisenberg interaction and under the intrinsic decoherence. Solutions of this decoherence model for the initial spin-1/2 and spin-1 maximally entangled states are obtained, based on which we calculate the NAQC and entanglement. In the weak region of magnetic field, the NAQC behaves as a damped oscillation with the time evolves, while the entanglement decays exponentially (behaves as a damped oscillation) for the spin-1/2 (spin-1) case. Moreover, the decay of both the NAQC and entanglement can be suppressed significantly by tuning the magnetic field and anisotropy of the spin interaction to some decoherence-rate-determined optimal values.
Keywords:  quantum coherence      quantum entanglement      intrinsic decoherence  
Received:  18 March 2021      Revised:  14 April 2021      Accepted manuscript online:  08 May 2021
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  75.10.Pq (Spin chain models)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774406 and 11934018), the National Key Research and Develepment Program of China (Grant Nos. 2016YFA0302104 and 2016YFA0300600), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G07).
Corresponding Authors:  Heng Fan     E-mail:  hfan@iphy.ac.cn

Cite this article: 

Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁) Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence 2021 Chin. Phys. B 30 070307

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Modi K, Brodutch A, Cable H, Paterek Z and Vedral V 2012 Rev. Mod. Phys. 84 1655
[3] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[4] Hu M L, Hu X, Wang J C, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762–764 1
[5] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[6] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[7] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[8] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
[9] Yuan X, Zhou H, Cao Z and Ma X 2015 Phys. Rev. A 92 022124
[10] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
[11] Bu K, Singh U, Fei S M, Pati A K and Wu J 2017 Phys. Rev. Lett. 119 150405
[12] Yu C S 2017 Phys. Rev. A 95 042337
[13] Streltsov A, Chitambar E, Rana S, Bera M N, Winter A and Lewenstein M 2016 Phys. Rev. Lett. 116 240405
[14] Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407
[15] Hillery M 2016 Phys. Rev. A 93 012111
[16] Shi H L, Liu S Y, Wang X H, Yang W L, Yang Z Y and Fan H 2017 Phys. Rev. A 95 032307
[17] Shi Y H, Shi H L, Wang X H, Hu M L, Liu S Y, Yang W L and Fan H 2020 J. Phys. A 53 085301
[18] Bera M N, Qureshi T, Siddiqui M A and Pati A K 2015 Phys. Rev. A 92 012118
[19] Bagan E, Bergou J A, Cottrell S S and Hillery M 2016 Phys. Rev. Lett. 116 160406
[20] Tan K C, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A 94 022329
[21] Hu M L and Fan H 2017 Phys. Rev. A 95 052106
[22] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
[23] Zhang J, Yang S R, Zhang Y and Yu C S 2017 Sci. Rep. 7 45598
[24] Hu M and Zhou W 2019 Laser Phys. Lett. 16 045201
[25] Liu X B, Tian Z H, Wang J C and Jing J L 2016 Ann. Phys. (N.Y.) 366 102
[26] Guarnieri G, Kolář M and Filip R 2018 Phys. Rev. Lett. 121 070401
[27] Hu M L and Fan H 2020 Sci. China-Phys. Mech. Astron. 63 230322
[28] Hu M L and Fan H 2016 Sci. Rep. 6 29260
[29] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
[30] Yu X D, Zhang D J, Liu C L and Tong D M 2016 Phys. Rev. A 93 060303
[31] Zhang A, Zhang K, Zhou L and Zhang W 2018 Phys. Rev. Lett. 121 073602
[32] Silva I A, Souza A M, Bromley T R, Cianciaruso M, Marx R, Sarthour R S, Oliveira I S, Franco R L, Glaser S J, deAzevedo E R, Soares-Pinto D O and Adesso G 2016 Phys. Rev. Lett. 117 160402
[33] Peng Y, Jiang Y and Fan H 2016 Phys. Rev. A 93 032326
[34] Mani A and Karimipour V 2015 Phys. Rev. A 92 032331
[35] Zanardi P, Styliaris G and Campos Venuti L 2017 Phys. Rev. A 95 052306
[36] Bu K, Kumar A, Zhang L and Wu J 2017 Phys. Lett. A 381 1670
[37] Misra A, Singh U, Bhattacharya S and Pati A K 2016 Phys. Rev. A 93 052335
[38] Milburn G J 1991 Phys. Rev. A 44 5401
[39] Mondal D, Pramanik T and Pati A K 2017 Phys. Rev. A 95 010301
[40] Hu M L and Fan H 2018 Phys. Rev. A 98 022312
[41] Hu M L, Wang X M and Fan H 2018 Phys. Rev. A 98 032317
[42] Datta S and Majumdar A S 2018 Phys. Rev. A 98 042311
[43] Hu M L, Gao Y Y and Fan H 2020 Phys. Rev. A 101 032305
[44] Xie Y X and Qin Z Y 2020 Quantum Inf. Process. 19 375
[45] Xue G H and Qiu L 2020 Phys. Scr. 95 025101
[46] Hu M L, Zhang Y H and Fan H 2021 Chin. Phys. B 30 030308
[47] Ding Z Y, Yang H, Yuan H, Wang D, Yang J and Ye L 2019 Phys. Rev. A 100 022308
[48] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[49] Hu M L and Lian H L 2009 Eur. Phys. J. D 55 711
[50] Liu B Q, Shao B and Zou J 2010 Phys. Lett. A 374 1970
[51] Fan K M and Zhang G F 2014 Eur. Phys. J. D 68 163
[52] Liao Y Y, Jian S R and Lee J R 2019 Eur. Phys. J. D 73 47
[53] Mohamed A B A and Metwally N 2017 Ann. Phys. (N.Y.) 381 137
[54] Guo Y N, Fang M F and Zeng K 2018 Quantum Inf. Process. 17 187
[55] Zhang Z Y, Wei D X and Liu J M 2018 Laser Phys. Lett. 15 065207
[56] Hu M L 2010 Eur. Phys. J. D 59 497
[57] Xie Y X and Gao Y Y 2019 Laser Phys. Lett. 16 045202
[58] Xie Y X and Gao Y Y 2019 Laser Phys. Lett. 16 075201
[59] Xie Y X and Zhang Y H 2020 Laser Phys. Lett. 17 035206
[60] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[61] Hu M L and Fan H 2012 Phys. Rev. A 86 032338
[1] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[2] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[3] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[4] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[5] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[6] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[7] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[8] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[9] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[10] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[11] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[12] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[13] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[14] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[15] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
No Suggested Reading articles found!