Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 088503    DOI: 10.1088/1674-1056/abff26
Special Issue: SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC—Optical field manipulation Prev   Next  

Anisotropic photoresponse of layered rhenium disulfide synaptic transistors

Chunhua An(安春华)1,†, Zhihao Xu(徐志昊)1,2,†, Jing Zhang(张璟)1, Enxiu Wu(武恩秀)1, Xinli Ma(马新莉)1, Yidi Pang(庞奕荻)1, Xiao Fu(付晓)2, Xiaodong Hu(胡晓东)1, Dong Sun(孙栋)3, Jinshui Miao(苗金水)2,‡, and Jing Liu(刘晶)1,§
1 State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China;
2 State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
3 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
Abstract  Layered ReS2 with direct bandgap and strong in-plane anisotropy shows great potential to develop high-performance angle-resolved photodetectors and optoelectronic devices. However, systematic characterizations of the angle-dependent photoresponse of ReS2 are still very limited. Here, we studied the anisotropic photoresponse of layered ReS2 phototransistors in depth. Angel-resolved Raman spectrum and field-effect mobility are tested to confirm the inconsistency between its electrical and optical anisotropies, which are along 120° and 90°, respectively. We further measured the angle-resolved photoresponse of a ReS2 transistor with 6 diagonally paired electrodes. The maximum photoresponsivity exceeds 0.515 A·W-1 along b-axis, which is around 3.8 times larger than that along the direction perpendicular to b axis, which is consistent with the optical anisotropic directions. The incident wavelength- and power-dependent photoresponse measurement along two anisotropic axes further demonstrates that b axis has stronger light-ReS2 interaction, which explains the anisotropic photoresponse. We also observed angle-dependent photoresistive switching behavior of the ReS2 transistor, which leads to the formation of angle-resolved phototransistor memory. It has simplified structure to create dynamic optoelectronic resistive random access memory controlled spatially through polarized light. This capability has great potential for real-time pattern recognition and photoconfiguration of artificial neural networks (ANN) in a wide spectral range of sensitivity provided by polarized light.
Keywords:  ReS2      in-plane anisotropy      anisotropic photoresponse      phototransistor  
Received:  21 March 2021      Revised:  06 May 2021      Accepted manuscript online:  08 May 2021
PACS:  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  84.32.Ff (Conductors, resistors (including thermistors, varistors, and photoresistors))  
  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
Corresponding Authors:  Jinshui Miao, Jing Liu     E-mail:  jsmiao@mail.sitp.ac.cn;jingliu_1112@tju.edu.cn

Cite this article: 

Chunhua An(安春华), Zhihao Xu(徐志昊), Jing Zhang(张璟), Enxiu Wu(武恩秀), Xinli Ma(马新莉), Yidi Pang(庞奕荻), Xiao Fu(付晓), Xiaodong Hu(胡晓东), Dong Sun(孙栋), Jinshui Miao(苗金水), and Jing Liu(刘晶) Anisotropic photoresponse of layered rhenium disulfide synaptic transistors 2021 Chin. Phys. B 30 088503

[1] Freitag M 2008 Nat. Nanotechnol. 3 455
[2] Geim A K and Grigorieva I V 2013 Nature 499 419
[3] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X F 2016 Nat. Rev. Mater. 1 16042
[4] Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y S, Ho C H, Yan J, Ogletree D, Aloni S, Ji J, Li S, Li J, Peeters F M and Wu J 2104 Nat. Commun. 5 3252
[5] Horzum S, Ćakir, D, Suh J, Tongay S, Huang Y S, Ho C H, Wu J, Sahin H and Peeters F M 2014 Phys. Rev. B 89 155433
[6] Zhang E, Jin Y, Yuan X, Wang W, Zhang C, Tang L, Liu S, Zhou P, Hu W and Xiu F 2015 Adv. Functl. Mater. 25 4076
[7] Liu E, Long M, Zeng J, et al. 2016 Adv. Funct. Mater. 26 1938
[8] Liu F, Zheng S, He X, et al. 2016 Adv. Funct. Mater. 26 1169
[9] Ríos C, Stegmaier M, Hosseini P, Wang D, Scherer T, Wright C D, Bhaskaran H and Pernice H 2015 Nat. Photon. 9 725
[10] Liu Y, Guo J, Song W, Wang P, Gambin V, Huang Y and Duan X 2021 Small Struct. 2 2000039
[11] Zhong H, Sun Q, Li G, Du J, Huang H, Guo E, He M, Wang C, Yang G, Ge C and Jin K 2020 Chin. Phys. B 29 040703
[12] Wang X, Ge C, Li G, Guo E, He M, Wang C, Yang G and Jin K 2020 Chin. Phys. B 29 098101
[13] Ho, C H and Huang C E 2004 J. Alloys Compd. 383 74
[14] Dumcenco D O and Huang Y S 2007 J. Appl. Phys. 102 083523
[15] Fang C M, Wiegers G, Haas C and Groot R A de 1997 J. Phys.: Condens. Matter 9 4411
[16] Thakar K, Mukherjee B, Grover S, Kaushik N, Deshmukh M and Lodha S 2018 ACS Appl. Mater. Interfaces 10 36512
[17] Guo Q, Pospischil A, Bhuiyan M, et al. 2016 Nano Lett. 16 4648
[18] Huang M, Yan H, Heinz T and Hone J 2010 Nano Lett. 10 4074
[19] Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458
[20] Chenet D A, Aslan O B, Huang P, Fan C, Zande A, Heinz T and Hone J 2015 Nano Lett. 15 5667
[21] Ovchinnikov D, Gargiulo F, Allain A, Pasquier D, Dumcenco D, Ho C H, Yazyev O and Kis Andras 2016 Nat. Commun. 7 12391
[22] Liu E, Fu Y, Wang Y, et al. 2015 Nat. Commun. 6 6991
[23] Xu M, Gu Y, Peng R, Young N and Li Mo 2017 Appl. Phys. B 123 130
[24] He H, Yang R, Zhou W, Huang H, Xiong J, Gan L, Zhai T and Guo X 2018 Small 14 1800079
[25] Jin H, Xin S, Chuang C, Li W, Wang H, Zhu J, Xie H, Zhang T, Wan Y, Qi Z, Yan W, Lu Y, Chan T, Wu X, Goodenough J, Ji H and Duan X F 2020 Science 370 192
[26] Zhao Y, Liu B, Yang J, He J, and Jiang J 2020 Chin. Phys. Lett. 37 088501
[27] Guo C, Wang B, Xia W, Guo Y and Xue J 2019 Chin. Phys. Lett. 36 078501
[28] Ho C H 2013 Cryst. Struct. Theory Appl. 02 65
[29] Ho C H, Yen P C and Huang Y S 2002 Phys. Rev. B 66 245207
[1] Spectral response modeling and analysis of p-n-p In0.53Ga0.47As/InP HPTs
Jun Chen(陈俊), Jiabing Lv(吕加兵). Chin. Phys. B, 2016, 25(9): 097202.
[2] Strain-induced magnetism in ReS2 monolayer with defects
Xiao-Ou Zhang(张小欧), Qing-Fang Li(李庆芳). Chin. Phys. B, 2016, 25(11): 117103.
[3] Analysis on high speed response of a uni-traveling-carrier double hetero-junction phototransistor
Jiang Zhi-Yun, Xie Hong-Yun, Zhang Liang-Hao, Zhang Wan-Rong, Hu Rui-Xin, Huo Wen-Juan. Chin. Phys. B, 2015, 24(4): 048504.
[4] High-photosensitivity polymer thin-film transistors based on poly(3-hexylthiophene)
Liu Yu-Rong, Lai Pei-Tao, Yao Ruo-He. Chin. Phys. B, 2012, 21(8): 088503.
[1] Wang Jun, Liu Yi, Dong Bao-zhong, Li Zhi-hong, Gong Yan-jun, Zhang Ye, Wu Dong, Sun Yu-han. STUDY OF MESOPOROUS SILICA MATERIALS BY SMALL ANGLE X-RAY SCATTERING[J]. Chin. Phys., 2001, 10(5): 429 -432 .
[2] Sheng Yong, Wang Rong, Jiang Gang, Zhu Zheng-he. CALCULATION OF THE FINE STRUCTURE OF OXYGEN-LIKE IONS USING THE POLARIZATION POTENTIAL FUNCTION[J]. Chin. Phys., 2001, 10(6): 505 -511 .
[3] Dai Shuo, Guo Yun-Jun. Mirror nodes in growing random networks[J]. Chin. Phys., 2004, 13(4): 423 -427 .
[4] Zhang Li-Chun, Wu Yue-Qin, Zhao Ren. Quantum statistical entropy for Kerr-de Sitter black hole[J]. Chin. Phys., 2004, 13(6): 974 -978 .
[5] Gong Tian-Xi, Li Ai-Gen, Wang Yong-Jiu. Gravitational effect of centre mass with electric charge and a large number of magnetic monopoles[J]. Chin. Phys., 2005, 14(4): 859 -862 .
[6] Liu Guo-Zhi, Huang Wen-Hua, Shao Hao, Xiao Ren-Zhen. Effect of longitudinal applied magnetic field on the self-pinched critical current in intense electron beam diode[J]. Chin. Phys., 2006, 15(3): 600 -603 .
[7] Zhang Ming-Jian, Lang Pei-Lin, Peng Zhi-Hui, Chen Ying-Fei, Chen Ke, Zheng Dong-Ning. High-Tc planar SQUID gradiometer for eddy current non-destructive evaluation[J]. Chin. Phys., 2006, 15(8): 1903 -1908 .
[8] Li Yuan, Zeng Gui-Hua. A (2, 3) quantum threshold scheme based on Greenberger--Horne--Zeilinger state[J]. Chin. Phys., 2007, 16(10): 2875 -2879 .
[9] Zhang Jing-Xiang, Li Hui, Song Xi-Gui, Zhang Jie. Inverse Monte Carlo study on effective interaction potential of Ag--Rh alloy from pair correlation functions[J]. Chin. Phys. B, 2009, 18(12): 5259 -5266 .
[10] Ma Li-Min, Wu Zong-Min. Identifying the temperature distribution in a parabolice quation with overspecified data using a multiquadric quasi-interpolation method[J]. Chin. Phys. B, 2010, 19(1): 10201 -010201 .