Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 080204    DOI: 10.1088/1674-1056/abff22
GENERAL Prev   Next  

Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study

Qian Yin(尹倩)1, Ye-Da Lian(连业达)1,†, Rong-Hai Wu(巫荣海)1,‡, Li-Qiang Gao(高利强)1, Shu-Qun Chen(陈树群)2, and Zhi-Xun Wen(温志勋)1
1 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China;
2 Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
Abstract  Molecular dynamics has been widely used to study the fundamental mechanism of Ni-based superalloys. However, the effect of the potential function and strain rate on mechanical behavior has rarely been mentioned in the previous molecular dynamics studies. In the present work, we show that the potential function of molecular dynamics can dramatically influence the simulation results of single crystal Ni-based superalloys. The microstructure and mechanical behavior of single crystal Ni-based superalloys under four commonly used potential functions are systematically compared. A most suitable potential function for the mechanical deformation is critically selected, and based on it, the role of strain rate on the mechanical deformation is investigated.
Keywords:  defects      intermetallic alloys and compounds      microstructure      simulation and modeling  
Received:  05 March 2021      Revised:  08 May 2021      Accepted manuscript online:  08 May 2021
PACS:  02.70.Ns (Molecular dynamics and particle methods)  
  61.50.-f (Structure of bulk crystals)  
  61.72.Nn (Stacking faults and other planar or extended defects)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
Fund: Project supported by National Science and Technology Major Project of China (Grant No. 2017-IV-0003-0040), Fundamental Research Funds for the Central Universities in NWPU, China (Grant No. 31020180QD088), the National Natural Science Foundation of China (Grant Nos. 12002275 and 51904015), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JQ-125), and General Program of Science and Technology Development Project of Beijing Municipal Education Commission, China (Grant No. KM202010005008).
Corresponding Authors:  Ye-Da Lian, Rong-Hai Wu     E-mail:  lianyeda@nwpu.edu.cn;ronghai.wu@nwpu.edu.cn

Cite this article: 

Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋) Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study 2021 Chin. Phys. B 30 080204

[1] Tominaga J, Sumi S and Awano H 2020 Appl. Phys. Express 13 075503
[2] Ko W S, Choi W S, Xu G L, Choi P P, Lkeda Y and Grabowski B 2021 Acta Mater. 202 331
[3] Maekawa Y, Sasaoka K and Yamamoto T 2019 Appl. Phys. Express 12 115001
[4] Bryukhanov I A 2020 Int. J. Plasticity 135 102834
[5] Kunugi R, Nakagawa N and Watanabe T 2017 Appl. Phys. Express 10 031501
[6] Gong W B, Geng H Y, Qu S X and Lu W B 2017 Appl. Phys. Express 10 105001
[7] An M R, Su M J, Deng Q, Song H Y, Wang C and Shang Y 2020 Chin. Phys. B 29 46201
[8] Wen Z X, Zhang Y M, Li Z W and Yue Z F 2018 Aerosp. Sci. Technol. 82 119
[9] Wen Z X, Pei H Q, Yang H, Wu Y W and Yue Z F 2018 Int. J. Fatigue 111 243
[10] Li L, He K, Sun S Y, Yang W Z, Yue Z F and Wan H 2020 Tribol. Lett. 68 26
[11] Xia W S, Zhao X B, Yue L and Zhang Z 2020 J. Mater. Sci. Technol. 44 76
[12] Yashiro K, Naito M, and Tomita Y 2002 Int. J. Mech. Sci. 44 1845
[13] Aihara T, Kaneko R and Kawazoe Y 2001 Mater. Trans. 42 425
[14] Li Y L, Wu W P and Ruan Z G 2016 Acta Metall. Sin. 29 1
[15] Li N L, Wu W P and Nie K 2018 Phys. Lett. A 382 1361
[16] Chen B, Wu W P and Chen M X 2021 Acta Mech. Solida Sin. 34 79
[17] Bitzek E, Brandl C, Derlet P M and Swygenhoven H V 2008 Phys. Rev. Lett. 100 235501
[18] Zhu T and Wang C Y 2005 Phys. Rev. B 72 014111
[19] Rodary E, Rodney D, Proville L, Bréchet Y and Martin G 2004 Phys. Rev. B 70 054111
[20] Wang J P, Liang J W, Wen Z X and Yue Z F 2019 Comp. Mater. Sci. 160 245
[21] Amodeo J, Begau C and Bitzek E 2014 Mater. Res. Lett. 2 140
[22] Reddy K V and Pal S 2018 Mol. Simulat. 44 1393
[23] Chamani M, Farrahi G H and Movahhedy M R 2016 Comp. Mater. Sci. 112 175
[24] Wu R H, Zhao Y S, Yin Q, Wang J P, Ai X and Wen Z X 2021 J. Alloys Compd. 855 157355
[25] Plimpton S 1995 J. Comput. Phys. 117 1
[26] Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 085001
[27] Kelchner L 1998 Phys. Rev. B 58 11085
[28] Mishin Y, Mehl M J and Papaconstantopoulos D A 2002 Phys. Rev. B 65 224114
[29] Pun G P and Mishin Y 2009 Philosophical Magazine 89 3245
[30] Angelo J E, Moody N R and Baskes M I 1995 Modelling Simul. Mater. Sci. Eng. 3 289
[31] Du J P, Wang C Y and Yu T 2012 Modelling Simul. Mater. Sci. Eng. 21 015007
[1] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[2] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[3] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[4] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[5] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[6] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[7] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[8] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[9] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[10] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[11] Passivation and dissociation of Pb-type defects at a-SiO2/Si interface
Xue-Hua Liu(刘雪华), Wei-Feng Xie(谢伟锋), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(9): 097101.
[12] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[13] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[14] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[15] Microstructure evolution of T91 steel after heavy ion irradiation at 550 ℃
Ligang Song(宋力刚), Bo Huang(黄波), Jianghua Li(李江华), Xianfeng Ma(马显锋), Yang Li(李阳), Zehua Fang(方泽华), Min Liu(刘敏), Jishen Jiang(蒋季伸), and Yanying Hu(胡琰莹). Chin. Phys. B, 2021, 30(8): 086103.
No Suggested Reading articles found!