Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077403    DOI: 10.1088/1674-1056/abfb53
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Superconductivity in an intermetallic oxide Hf3Pt4Ge2O

Chengchao Xu(徐程超)1,2, Hong Wang(王鸿)1,2, Huanfang Tian(田焕芳)1, Youguo Shi(石友国)1, Zi-An Li(李子安)1, Ruijuan Xiao(肖睿娟)1, Honglong Shi(施洪龙)3, Huaixin Yang(杨槐馨)1, and Jianqi Li(李建奇)1,2,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Science, Minzu University, Beijing 100081, China
Abstract  Discovery of a new superconductor with distinct crystal structure and chemistry often provides great opportunity for further expanding superconductor material base, and also leads to better understanding of superconductivity mechanisms. Here, we report the discovery of superconductivity in a new intermetallic oxide Hf3Pt4Ge2O synthesized through a solid-state reaction. The Hf3Pt4Ge2O crystallizes in a cubic structure (space group Fm-3m) with a lattice constant of a = 1.241 nm, whose stoichiometry and atomic structure are determined by electron microscopy and x-ray diffraction techniques. The superconductivity at 4.1 K and type-Ⅱ superconducting nature are evidenced by the electrical resistivity, magnetic susceptibility, and specific heat measurements. The intermetallic oxide Hf3Pt4Ge2O system demonstrates an intriguing structural feature that foreign oxygen atoms can be accommodated in the interstitial sites of the ternary intermetallic framework. We also successfully synthesized a series of Hf3Pt4Ge2O1+δ (-0.25 ≤ δ ≤ 0.5), and found the δ-dependent superconducting transition temperature Tc. The atomic structure and the electronic structure are also substantiated by first-principles calculations. Our results present an entirely new family of superconductors with distinct structural and chemical characteristics, and could attract research interest in further finding new superconductors and exploring novel physics pertaining to the 5d-electron in these intermetallic compound systems.
Keywords:  superconductivity      intermetallic oxide      5d-electron  
Received:  08 April 2021      Revised:  19 April 2021      Accepted manuscript online:  26 April 2021
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.25.Bt (Thermodynamic properties)  
  74.25.F- (Transport properties)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300303, 2017YFA0504703, 2017YFA0302904, and 2017YFA0303000), the National Basic Research Program of China (Grant No. 2015CB921304), the National Natural Science Foundation of China (Grant Nos. 11774391, 11774403, and 11804381), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000 and XDB07020000), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. ZDKYYQ20170002), and the China Postdoctoral Science Foundation (Grant No. BX20180351).
Corresponding Authors:  Jianqi Li     E-mail:  ljq@iphy.ac.cn

Cite this article: 

Chengchao Xu(徐程超), Hong Wang(王鸿), Huanfang Tian(田焕芳), Youguo Shi(石友国), Zi-An Li(李子安), Ruijuan Xiao(肖睿娟), Honglong Shi(施洪龙), Huaixin Yang(杨槐馨), and Jianqi Li(李建奇) Superconductivity in an intermetallic oxide Hf3Pt4Ge2O 2021 Chin. Phys. B 30 077403

[1] Onnes H K 1911 Comm. Phys. Lab. Univ. Leiden 28 120
[2] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W and Schaefer H 1979 Phys. Rev. Lett. 43 1892
[3] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189
[4] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. Lett. 58 908
[5] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[6] Matthias B T 1970 The Empirical Approach to Superconductivity (Boston: Springer)
[7] Morosan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544
[8] Mao Y Y, Li J, Huan Y L, Yuan J, Li Z A, Chai K, Ma M W, Ni S L, Tian J P, Liu S B, Zhou H X, Zhou F, Li J Q, Zhang G M, Jin K, Dong X L and Zhao Z X. 2018 Chin. Phys. Lett. 35 057402
[9] Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A and Cao G H 2015 Phys. Rev. X 5 011013
[10] Gumeniuk R, Schnelle W, Rosner H, Nicklas M, Leithe J A and Grin Y 2008 Phys. Rev. Lett. 100 017002
[11] Zang J W, Zhang J, Zhu Z H, Ding Z F, Huang K, Peng X R, Hillier A D and Shu L 2019 Chin. Phys. Lett. 36 107402
[12] Sheng Q, Zhang J, Huang K, Ding Z, Peng X, Tan C and Shu L 2017 Chin. Phys. B 26 057401
[13] Zhang Y, Wang B, Xiao Z, Lu Y, Kamiya T, Uwatoko Y, Kageyama H and Hosono H 2017 npj Quantum Materials 2 45
[14] Wang B, Zhang Y Q, Xu S X, Ishigaki K, Matsubayashi K, Cheng J G, Hosono H and Uwatoko Y. 2019 Chin. Phys. B 28 107401
[15] Hamamoto S and Kitagawa J 2018 Mater. Res. Express 5 106001
[16] Ma K, Lago J and Rohr F O V 2019 J. Alloys Compd. 796 287
[17] Liu Z, Wu W, Zhao Z, Zhao H, Cui J, Shan P, Zhang J, Yang C, Sun P, Wei Y, Li S, Zhao J, Sui Y, Cheng J, Lu L, Luo J and Liu G 2019 Phys. Rev. B 99 184509
[18] Larson A C and Dreele R B V 2000 Los Alamos National Laboratory Report LAUR 86
[19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Nagata Y, Sodeyama K, Yashiro S, Sasaki H, Samata H, Uchida T and Lan M D 1998 J. Alloys Compd. 281 112
[22] Bende D, Wagner F R, Sichevych O and Grin Y 2017 Angew. Chem. Int. Ed. 56 1313
[23] Brandt E H 2004 Physica C 404 74
[24] Helfand E and Werthamer N R 1966 Phys. Rev. 147 288
[25] Xiang T 2006 d-Wave Superconductivity (Beijing: Science Press) pp. 55-56 (in Chinese)
[26] Li S, Liu X Y, Anand V and Bing Lv 2018 New. J. Phys. 20 aa9ccd
[27] Xing J, Lin H, Li Y F, Li S, Zhu X Y, Yang H and Wen H H. 2016 Phys. Rev. B 93 104520
[28] Hafiez M A, Aswartham S, Wurmehl S, Grinenko V, Hess C, Drechsler S L, Johnston S, Wolter A U B, Büchner B, Rosner H and Boeri L. 2012 Phys. Rev. B 85 134533
[29] Deguchi K, Mao Z Q, Yaguchi H and Maeno Y 2004 Phys. Rev. Lett. 92 047002
[30] McMillan W L 1968 Phys. Rev. 167 331
[31] Wang B and Ohgushi K 2013 Sci. Rep. 3 3381
[32] Hein R A 1956 Phys. Rev. 102 1511
[33] Klimczuk T, Wang C H, Gofryk K, Ronning F, Winterlik J, Fecher G H, Griveau J C, Colineau E, Felser C, Thompson J D, Safarik D J and Cava R J 2012 Phys. Rev. B 85 174505
[34] Matthias B T, Geballe T H and Corenzwit E 1954 Phys. Rev. 95 143
[35] Matthias B T, Geballe T H, Longinotti L D, Corenzwit E, Hull G W, Willens R H and Maita J P 1967 Science 156 645
[36] Tanigaki K, Ebbesen T W, Saito S, Mizuki J, Tsai J S, Kubo Y and Kuroshima S 1991 Nature 352 222
[37] Cava R J, Takagi H, Zandbergen H W, Krajewski J J, Peck W F, Siegrist T, Batlogg B, Dover R B V, Felder R J, Mizuhashi K, Lee J O, Eisaki H and Uchida S 1994 Nature 367 252
[38] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63
[39] Cava R J 2000 J. Am. Ceram. Soc. 83 5
[1] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[2] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[3] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[4] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[5] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[6] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[7] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[8] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[9] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
[10] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
[11] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[12] Substitution effect on the superconductivity in Mo3-xRexAl2C with β-Mn structure prepared by microwave method
Jun-Nan Sun(孙俊男), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Yin Chen(陈银), Qing-Song Yang(杨清松), Lei Shan(单磊), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2021, 30(7): 077401.
[13] Inverted V-shaped evolution of superconducting temperature in SrBC under pressure
Ru-Yi Zhao(赵如意), Xun-Wang Yan(闫循旺), and Miao Gao(高淼). Chin. Phys. B, 2021, 30(7): 076301.
[14] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[15] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
No Suggested Reading articles found!