Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 110304    DOI: 10.1088/1674-1056/abfa0b
GENERAL Prev   Next  

Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature

Ying-Jie Chen(陈英杰) and Feng-Lan Shao(邵凤兰)
School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
Abstract  We study the property of magnetopolaron in a parabolic quantum dot under the Rashba spin-orbit interaction (RSOI) by adopting an unitary transformation of Lee-Low-Pines type and the variational method of Pekar type with and without considering the temperature. The temporal spatial distribution of the probability density and the relationships of the oscillating period with the RSOI constant, confinement constant, electron-phonon coupling strength, phonon wave vector and temperature are discussed. The results show that the probability density of the magnetopolaron in the superposition of the ground and first excited state takes periodic oscillation (T0/period) in the presence or absence of temperature. Because of the RSOI, the oscillating period is divided into different branches. Also, the results indicate that the oscillating period increases (decreases) when the RSOI constant, electron-phonon coupling strength and phonon wave vector (the confinement constant) increase in a proper temperature, and the temperature plays a significant role in determining the properties of the polaron.
Keywords:  Rashba spin-orbit interaction      quantum dot      polaron      temperature  
Received:  06 February 2021      Revised:  10 April 2021      Accepted manuscript online:  21 April 2021
PACS:  03.70.+k (Theory of quantized fields)  
  71.38.-k (Polarons and electron-phonon interactions)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  75.10.-b (General theory and models of magnetic ordering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975011).
Corresponding Authors:  Ying-Jie Chen     E-mail:  sdchenyingjie@126.com

Cite this article: 

Ying-Jie Chen(陈英杰) and Feng-Lan Shao(邵凤兰) Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature 2021 Chin. Phys. B 30 110304

[1] Boda A 2019 J. Magn. Magn. Mater. 483 83
[2] Horovitz B and Golub A 2019 Phys. Rev. B 99 241407
[3] Chen Z W and Ng T K 2019 Phys. Rev. B 99 235157
[4] Krivobok V S, Nikolaev S N, Onishchenko E E, Pruchkina A A, Chentsov S I, Klokov A Y, Sorokin S V and Sedova I V 2019 J. Lumin. 213 273
[5] Jin Y, Syplyatyev O T, Moreno M, Anthore A, Tan W K, Griffiths J P, Farrer I, Ritchie D A, Glazman L I, Schofifield A J and Ford C J B 2019 Nat. Commun. 10 2821
[6] Van-Tan L, Thang T V, Vy N D and Cao H T 2019 Phys. Lett. A 383 2110
[7] Yang J Y and Chen H J 2019 Acta Phys. Sin. 68 246302 (in Chinese)
[8] Hu S, Yang L, Mi M H, et al. 2020 Chin. Phys. B 29 087305
[9] Li S, Shi L and Yan Z W 2020 Chin. Phys. B 29 097802
[10] Harvey-Collard P, Jacobson N T, Bureau-Oxton C, Jock R M, Srinivasa V, Mounce A M, Ward D R, Anderson J M, Manginell R P, Wendt J R, Pluym T, Lilly M P, Luhman D R, Pioro-Ladriére M and Carroll M S 2019 Phys. Rev. Lett. 122 217702
[11] Lahon S, Kumar M, Jha P K and Mohan M 2013 J. Lumin. 144 149
[12] Pan A and Marinescu D C 2019 Phys. Rev. B 99 245204
[13] Rashba E I 1960 Sov. Phys. Solid State 2 1224
[14] Shinjo T 2009 Nanomagnetism and Spintronics (Amstadam: Elsevier Science)
[15] Poszwa A 2018 Physica E 99 145
[16] Zhang G, Wang Y and Yan Y 2013 Solid State Commun. 159 98
[17] Yuan R Y, Wang R Z, Duan Z Q, Song X M, Wang B and Yan H 2007 Phys. Lett. A 365 248
[18] Kumar D S, Boda A, Mukhopadhyay S and Chatterjee A 2015 Superlat. Microstruct. 88 174
[19] Khordad R 2018 J. Magn. Magn. Mater. 449 510
[20] Puebla J, Auvray F, Yamaguchi N, Xu M, Bisri S Z, Iwasa Y, Ishii F and Otani Y 2019 Phys. Rev. Lett. 122 256401
[21] Koga T, Sekine Y and Nitta J 2006 Phys. Rev. B 74 041302
[22] Hofmann A, Maisi V F, Krahenmann T, Reichl C, Wegscheider W, Ensslin K and Ihn T 2017 Phys. Rev. Lett. 119 176807
[23] Khordad R and H Bahramiyan 2016 Commun. Theor. Phys. 65 87
[24] Khordad R and Rastegar Sedehi H R 2017 Superlat. Microstruct. 101 559
[25] Khordad R and Rastegar Sedehi H R 2017 Indian J. Phys. 91 825
[26] Khordad R and Rastegar Sedehi H R 2018 J. Low Temperature Phys. 190 200
[27] Tiotsop M, Fotue A J, Fautso G K, Kenfack S C, Mainimo E, Fotsin H B and Fai L C 2016 Chin. J. Phys. 54 795
[28] Sukirti G, Manoj K, Kumar J P and Man M 2016 Chin. Phys. B 25 056502
[29] Chen Y J, Song S T and Xiao J L 2018 Superlat. Microstruct. 118 92
[30] Chen Y J, Song S T and Xiao J L 2018 Indian J. Phys. 92 587
[31] Chen Y J, Song S T and Xiao J L 2018 Superlat. Microstruct. 113 82
[32] Li W P, Li S J, Yin J W, Yu Y F and Wang Z W 2014 Solid State Commun. 192 1
[33] Eslami L, Chaghari Z and Faizabadi E 2013 Phys. Lett. A 377 1459
[34] Hosseinpour P, Soltani-Vala A and Barvestani J 2016 Physica E 80 48
[35] Saini P, Boda A and Chatterjee A 2019 J. Magn. Magn. Mater. 485 407
[36] Khordad R 2015 Physica E 69 249
[37] Vaseghi B, Azizi V, Khosravi M and Owjifard Z 2019 Eur. Phys. J. D 73 51
[38] Scarlino P, Kawakami E, Stano P, Shafiei M, Reichl C, Wegscheider W, and Vandersypen L M K 2014 Phys. Rev. Lett. 113 256802
[39] Könemann J, Haug R J, Maude D K, Falko V I and Altshuler B L 2005 Phys. Rev. Lett. 94 226404
[40] Khosla M, Rao S and Gupta S 2018 Sci. Rep. 8 8385
[41] Khordad R, Bornaei R and Mardani-Fard H A 2015 Indian J. Phys. 89 545
[42] Khordad R and Vaseghi B 2019 Chin. J. Phys. 59 473
[43] Khordad R and Vaseghi B 2019 Int. J. Quantum Chem. 119 20
[44] Lee T D, Low F E and Pines D 1953 Phys. Rev. 90 297
[45] Landau L D and Pekar S I 1948 Zh. Eksp Teor. Fiz. 18 419
[46] Pekar S I 1954 Untersuchungen ber die Elektronentheorie der Kristalle (Berlin: Akademie Verlag)
[47] Liu W F, Chen Y J and Shao F L 2019 Superlat. Microstruct. 133 106178
[48] Chen Y J, Cui C F and Song H T 2019 Physica E 111 130
[49] Chen Y J, Cui C F, Liu W F and Shao F L 2020 Int. J. Theor. Phys. 59 1829
[50] Chen Y J, Liu W F and Shao F L 2019 Physica E 110 15
[51] Chen Y J and Zhang P Y 2018 J. Low Temperature Phys. 194 262
[52] Chen Y J and Wang X 2018 Int. J. Theor. Phys. 57 3540
[53] Chen Y J and Xiao J L 2016 J. Low Temperature Phys. 186 241
[54] Chen Y J and Xiao J L 2013 J. Low Temperature Phys. 170 60
[55] Chen Y J and Xiao J L 2012 Chin. J. Quantum Electron. 29 602
[56] Chen Y J and Xiao J L 2008 Acta Phys. Sin. 57 6758 (in Chinese)
[57] Chen Y J and Xiao J L 2009 Commun. Theor. Phys. 52 601
[58] Yin J W, Li W P, Yu Y F and Xiao J L 2011 J. Low Temperature Phys. 163 53
[59] Li Z X, Wang J X and Wang L K 2015 Physica B 462 76
[60] Bhattacharyya K, Debnath D and Chatterjee A 2020 J. Magn. Magn. Mater. 506 166745
[61] Liu G H, Guo K X, Wu Q J and Wu J H 2013 Superlat. Microstruct. 53 173
[62] Wu Q J, Guo K X, Liu G H and Wu T H 2013 Physica B 410 206
[63] Liu G H, Guo K X and Wu J H 2013 Superlat. Microstruct. 57 102
[64] Fotue A J, Fobasso M F C, Kenfack S C, Tiotsop M, Djomou J R D, Ekosso C M, Nguimeya G P, Danga J E, Keumo Tsiaze R M and Fai L C 2016 Eur. Phys. J. Plus 131 205
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[4] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[7] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[8] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[9] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[10] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[11] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[12] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[13] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[14] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[15] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
No Suggested Reading articles found!