Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120503    DOI: 10.1088/1674-1056/abfa09
GENERAL Prev   Next  

Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay

Mei Li(李梅)1,2, Ruo-Xun Zhang(张若洵)3, and Shi-Ping Yang(杨世平)1,†
1 College of Physics, Hebei Normal University, Shijiazhuang 050024, China;
2 Department of Computer Science, North China Electric Power University, Baoding 071003, China;
3 College of Primary Education, Xingtai University, Xingtai 054001, China
Abstract  This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks (FOCVCNNs) with time-delay. The chaotic behaviors of a class of fractional-order complex-valued neural network are investigated. Meanwhile, based on the complex-valued inequalities of fractional-order derivatives and the stability theory of fractional-order complex-valued systems, a new adaptive controller and new complex-valued update laws are proposed to construct a synchronization control model for fractional-order complex-valued chaotic neural networks. Finally, the numerical simulation results are presented to illustrate the effectiveness of the developed synchronization scheme.
Keywords:  adaptive synchronization      fractional calculus      complex-valued chaotic neural networks      time-delay  
Received:  02 March 2021      Revised:  08 April 2021      Accepted manuscript online:  21 April 2021
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the Science and Technology Support Program of Xingtai, China (Grant No. 2019ZC054).
Corresponding Authors:  Shi-Ping Yang     E-mail:  yangship@hebtu.edu.cn

Cite this article: 

Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平) Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay 2021 Chin. Phys. B 30 120503

[1] Podlubny I 1999 Fractional Differential Equations (San Diego:Academic Press) p. 20
[2] Chen W C 2008 Chaos, Solitons and Fractals 36 1305
[3] Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Applications of Fractional Differential Equations (Amsterdam:Elsevier Science Ltd) p. 126
[4] Benson D A, Wheatcraft S W and Meerschaert M M 2000 Water Resour. Res. 36 1403
[5] Zhang L M, Sun K H, Liu W H and He S B 2017 Chin. Phys. B 26 100504
[6] Hilfer R 2001 Applications of Fractional Calculus in Physics (New Jersey:World Scientific) p. 401
[7] Luo R and Su H 2018 Chin. J. Phys. 56 1599
[8] Zhang R X and Yang S P 2011 Nonlinear Dyn. 66 831
[9] Yang X, Li C, Huang T and Song Q 2017 Appl. Math. Comput. 293 416
[10] Li Y, Chen Y Q and Podlubny I 2009 Automatica 45 1965
[11] Shahvali M, Sistani M N and Modares H 2019 IEEE Contr. Syst. Lett. 3 481
[12] Matignon D 1996 Computational Engineering in Systems and Application Multiconference, July 7-9, 1996, Lille, France, p. 963
[13] He S B, Sun K H and Wu X M 2020 Phys. Script. 95 035220
[14] Huang Y J, Yuan X Y and Yang X H 2020 Chin. Phys. B 29 020703
[15] Bao H and Cao J 2015 Neural Netw. 63 001
[16] Bao H, Park J and Cao J 2015 Nonlinear Dyn. 82 1343
[17] Bao H, Park J and Cao J 2016 Neural Netw. 81 016
[18] Chen J, Zeng Z and Jiang P 2014 Neural Netw. 51 001
[19] Yang X, Li C, Song Q, Huang T and Chen X 2016 Neurocomputing 207 276
[20] Ding Z, Shen Y and Wang L 2016 Neural Netw. 73 077
[21] Velmurugana G, Rakkiyappana R, Vembarasan V, Cao J and Alsaedi A 2016 Neural Netw. 86 042
[22] Zhang L, Song Q K and Zhao Z J 2017 Appl. Math. Comput. 298 0296
[23] Wang, L, Song Q, Liu Y, Zhao Z and Alsaadi F E 2017 Neurocomputing 243 049
[24] Rakkiyappan R, Velmurugan G and Cao J 2015 Chaos, Solitons and Fractals 78 297
[25] Rakkiyappan R, Velmurugan G and Cao J 2014 Nonlinear Dyn. 78 2823
[26] Chang W, Zhu S, Li J and Sun K 2018 Appl. Math. Comput. 338 346
[27] Zhang Y and Deng S 2019 Chaos, Solitons and Fractals 128 176
[28] Zheng B, Hu C, Yu J and Jiang H 2020 Neurocomputing 373 070
[29] Li C B, Lei T F, Wang X and Chen G R 2020 Chaos 30 063124
[30] Li C B, Sprott J C, Akgul A, Herbert H C I and Zhao Y B 2017 Chaos 27 083101
[31] Li C B, Sprott J C, Liu Y, Gu Z and Zhang J 2018 Int. J. Bifurcat. Chaos 28 1850163
[32] Quan X, Zhuang S, Liu S and Xiao J 2016 Neurocomputing 186 119
[33] Zhang R X, Liu Y and Yang S P 2019 Entropy 21 207
[34] Zhang R X, Feng S W and Yang S P 2019 Entropy 21 407
[35] Li H L, Hu C and Cao J 2019 Neural Netw. 118 102
[36] Wu Z Y, Chen G R and Fu X C 2012 Chaos 22 023127
[37] Zhang W W, Cao J D, Chen D Y and Alsaadi F E 2018 Entropy 20 54
[38] Li L, Wang Z, Lu J W and Li Y X 2018 Entropy 20 124
[1] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[2] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[3] Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection
Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya. Chin. Phys. B, 2022, 31(1): 018401.
[4] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[5] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[6] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[7] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[8] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[9] Hybrid-triggered consensus for multi-agent systems with time-delays, uncertain switching topologies, and stochastic cyber-attacks
Xia Chen(陈侠), Li-Yuan Yin(尹立远), Yong-Tai Liu(刘永泰), Hao Liu(刘皓). Chin. Phys. B, 2019, 28(9): 090701.
[10] Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓). Chin. Phys. B, 2017, 26(4): 040202.
[11] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[12] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[13] Strip silicon waveguide for code synchronization in all-optical analog-to-digital conversion based on a lumped time-delay compensation scheme
Sha Li(李莎), Zhi-Guo Shi(石志国), Zhe Kang(康哲), Chong-Xiu Yu(余重秀), Jian-Ping Wang(王建萍). Chin. Phys. B, 2016, 25(4): 044210.
[14] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
[15] Code synchronization based on lumped time-delay compensation scheme with a linearly chirped fiber Bragg grating in all-optical analog-to-digital conversion
Wang Tao (王涛), Kang Zhe (康哲), Yuan Jin-Hui (苑金辉), Tian Ye (田野), Yan Bin-Bin (颜玢玢), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀). Chin. Phys. B, 2014, 23(10): 104212.
No Suggested Reading articles found!