Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 076103    DOI: 10.1088/1674-1056/abf919

Small activation entropy bestows high-stability of nanoconfined D-mannitol

Lin Cao(曹琳)1,2,3, Li-Jian Song(宋丽建)2,3,†, Ya-Ru Cao(曹亚茹)2,3, Wei Xu(许巍)2,3, Jun-Tao Huo(霍军涛)2,3, Yun-Zhuo Lv(吕云卓)1,‡, and Jun-Qiang Wang(王军强)2,3,§
1 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China;
2 CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences(CAS), Ningbo 315201, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  It has been a long-standing puzzling problem that some glasses exhibit higher glass transition temperatures (denoting high stability) but lower activation energy for relaxations (denoting low stability). In this paper, the relaxation kinetics of the nanoconfined D-mannitol (DM) glass was studied systematically using a high-precision and high-rate nanocalorimeter. The nanoconfined DM exhibits enhanced thermal stability compared to the free DM. For example, the critical cooling rate for glass formation decreases from 200 K/s to below 1 K/s; the Tg increases by about 20 K-50 K. The relaxation kinetics is analyzed based on the absolute reaction rate theory. It is found that, even though the activation energy E* decreases, the activation entropy S* decreases much more for the nanoconfined glass that yields a large activation free energy G* and higher thermal stability. These results suggest that the activation entropy may provide new insights in understanding the abnormal kinetics of nanoconfined glassy systems.
Keywords:  D-mannitol glass      confinement      relaxation      activation entropy  
Received:  08 March 2021      Revised:  06 April 2021      Accepted manuscript online:  19 April 2021
PACS:  61.43.Fs (Glasses)  
  61.20.Lc (Time-dependent properties; relaxation)  
  64.70.P- (Glass transitions of specific systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52001319, 52071327, 51922102, 51771216, and 51701230), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LR18E010002), the Ningbo 2025 Science and Technology Innovation Project (Grant No. 2019B10051), and the Natural Science Foundation of Ningbo City (Grant No. 202003N4354).
Corresponding Authors:  Li-Jian Song, Yun-Zhuo Lv, Jun-Qiang Wang     E-mail:;;

Cite this article: 

Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强) Small activation entropy bestows high-stability of nanoconfined D-mannitol 2021 Chin. Phys. B 30 076103

[1] Zhao H Y, Yu Z N, Begum F, Hedden R C and Simon S L 2014 Polymer 55 4959
[2] Wang H N, Hor J L, Zhang Y, Liu T Y, Lee D and Fakhraai Z 2018 ACS Nano 12 5580
[3] Casalini R, Zhu L, Baer E and Roland C M 2016 Polymer 88 133
[4] Schüller J, Mel'nichenko Y B, Richert R and Fischer E W 1994 Phys. Rev. Lett. 73 2224
[5] Cheng S X and McKenna G B 2019 Mol. Pharm. 16 856
[6] Dai X Y, Li H H, Ren Z J, Russell T P, Yan S K and Sun X L 2018 Macromolecules 51 5732
[7] Cao Y R, Song L J, Li A, Huo J T, Li F S, Xu W and Wang J Q 2020 Sci. China-Phys. Mech. Astron. 63 276113
[8] Laitinen R, Löbmann K, Strachan C J, Grohganz H and Rades T 2013 International Journal of Pharmaceutics 453 65
[9] Angell C A 1985 J. Non-Cryst. Solids 73 1
[10] Angell C A 1995 Science 267 1924
[11] Jo C L, Xia L, Ding D and Dong Y D 2006 Chin. Phys. Lett. 23 672
[12] Zhao L Z, Xue R J, Wang W H and Bai H Y 2017 Chin. Phys. B 26 018106
[13] Zhang F F, Chen Y M, Wang R P, Shen X, Wang J Q and Xu T F 2019 Chin. Phys. B 28 047802
[14] Wang J F, Liu L, Pu J and Xiao J Z 2004 Acta Phys. Sin. 53 1916 (in Chinese)
[15] Qin Q and McKenna G B 2006 J. Non-Cryst. Solids 352 2977
[16] Michaelides A, Liu Z P, Zhang C J, Alavi A, King D A and Hu P 2003 J. Am. Chem. Soc. 125 3704
[17] Zarra S, Smulders M M J, Lefebvre Q, Clegg J K and Nitschke J R 2012 Angew. Chem. Int. Ed. 51 6882
[18] Rozwadowski T, Jasiurkowska-Delaporte M, Massalska-Arodź M, Yamamura Y and Saito K 2020 Phys. Chem. Chem. Phys. 22 24236
[19] Su W Y, Jia N, Li H S, Hao H X and Li C L 2017 Chin. J. Chem. Eng. 25 358
[20] Zhang P, Forsgren J and Stromme M 2014 Int. J. Pharmaceut. 472 185
[21] Yu L 2001 Adv. Drug. Deliver. Rev. 48 27
[22] Wibowo E S, Park B D and Causin V 2020 Ind. Eng. Chem. Res. 59 13095
[23] Zhu M, Wang J Q, Perepezko J H and Yu L 2015 J. Chem. Phys. 142 244504
[24] Brüning R and Samwer K 1992 Phys. Rev. B 46 11318
[25] Zhang B, Wang R J, Zhao D Q, Pan M X and Wang W H 2004 Phys. Rev. B 70 224208
[26] Böhmer R, Ngai K L, Angell C A and Plazek D J 1993 J. Chem. Phys. 99 4201
[27] Wang L M, Liu R P and Tian Y J 2020 Acta Phys. Sin. 69 196401 (in Chinese)
[28] Wang L M, Tian Y J, Liu R P and Wang W H 2012 Appl. Phys. Lett. 100 261913
[29] Turnbull D 1969 Contemp. Phys. 10 473
[30] Chen H S 1981 J. Non-Cryst. Solids 46 289
[31] Gallino I, Cangialosi D, Evenson Z, Schmitt L, Hechler S, Stolpe M and Ruta B 2018 Acta Mater. 144 400
[32] Hornboll L and Yue Y Z 2008 J. Non-Cryst. Solids 354 350
[33] Perez-De-Eulate N G and Cangialosi D 2018 Macromolecules 51 3299
[34] Cangialosi D, Boucher V M, Alegria A and Colmenero J 2013 Phys. Rev. Lett. 111 095701
[35] Song L J, Xu W, Huo J T, Wang J Q, Wang X M and Li R W 2018 Intermetallics 93 101
[36] Cagle Jr F W and Eyring H 1951 J. Appl. Phys. 22 771
[37] Song L J, Xu W, Huo J T, Li F S, Wang L M, Ediger M D and Wang J Q 2020 Phys. Rev. Lett. 125 135501
[38] Starkweather H W 1981 Macromolecules 14 1277
[39] Kuo S W, Chan S C and Chang F C 2003 Macromolecules 36 6653
[40] Ma Y N, Zhou T, Su G H, Li Y and Zhang A M 2016 RSC Adv. 6 87405
[41] Yu H B and Yang Q 2017 Acta Phys. Sin. 66 176108 (in Chinese)
[42] Ha J M, Wolf J H, Hillmyer M A and Ward M D 2004 J. Am. Chem. Soc. 126 3382
[43] Ha J M, Hillmyer M A and Ward M D 2005 J. Phys. Chem. B 109 1392
[44] Beiner M, Rengarajan G T, Pankaj S, Enke D and Steinhart M 2007 Nano Lett. 7 1381
[45] Rengarajan G T, Enke D, Steinhart M and Beiner M 2011 Phys. Chem. Chem. Phys. 13 21367
[46] Jackson C L and McKenna G B 1991 J. Non-Cryst. Solids 131 221
[47] Sonnenberger N, Anders N, Golitsyn Y, Steinhart M, Enke D, Saalwächter K and Beiner M 2016 Chem. Commun. 52 4466
[48] Arndt M, Stannarius R, Groothues H, Hempel E and Kremer F 1997 Phys. Rev. Lett. 79 2077
[49] Schönhals A, Goering H, Schick C, Frick B and Zorn R 2003 Eur. Phys. J. E 12 173
[50] Beiner M and Huth H 2003 Nat. Mater. 2 595
[51] Zuo Y C, Zhang Y Z, Huang R D and Min Y J 2019 Phys. Chem. Chem. Phys. 21 22
[52] Tang W and Perepezko J H 2018 J. Chem. Phys. 149 074505
[1] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[2] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[3] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[4] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[5] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[6] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[7] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[8] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[9] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[10] Active Brownian particles simulated in molecular dynamics
Liya Wang(王丽雅), Xinpeng Xu(徐新鹏), Zhigang Li(李志刚), Tiezheng Qian(钱铁铮). Chin. Phys. B, 2020, 29(9): 090501.
[11] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[12] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[13] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[14] Uncovering the internal structure of five-fold twinned nanowires through 3D electron diffraction mapping
Xin Fu(付新). Chin. Phys. B, 2020, 29(6): 068101.
[15] Spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne self-compensated atomic comagnetometer
Yan Lu(卢妍), Yueyang Zhai(翟跃阳), Yong Zhang(张勇), Wenfeng Fan(范文峰), Li Xing(邢力), Wei Quan(全伟). Chin. Phys. B, 2020, 29(4): 043204.
No Suggested Reading articles found!