Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100507    DOI: 10.1088/1674-1056/abf7ae
GENERAL Prev   Next  

Heterogeneous traffic flow modeling with drivers' timid and aggressive characteristics

Cong Zhai(翟聪)1,2, Weitiao Wu(巫威眺)1,†, and Songwen Luo(罗淞文)1
1 School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China;
2 School of Transportation and Civil Engineering and Architecture, Foshan University, Foshan 528000, China
Abstract  The driver's characteristics (e.g., timid and aggressive) has been proven to greatly affect the traffic flow performance, whereas the underlying assumption in most of the existing studies is that all drivers are homogeneous. In the real traffic environment, the drivers are distinct due to a variety of factors such as personality characteristics. To better reflect the reality, we introduce the penetration rate to describe the degree of drivers' heterogeneity (i.e., timid and aggressive), and proceed to propose a generalized heterogeneous car-following model with different driver's characteristics. Through the linear stability analysis, the stability conditions of the proposed heterogeneous traffic flow model are obtained based on the perturbation method. The impacts of the penetration rate of drivers with low intensity, the average value and standard deviation of intensity parameters characterizing two types of drivers on the stability of traffic flow are analyzed by simulation. Results show that higher penetration of aggressive drivers contributes to traffic flow stability. The average value has a great impact on the stability of traffic flow, whereas the impact of the standard deviation is trivial.
Keywords:  heterogeneous car-following model      driver characteristic      penetration rate      stability  
Received:  10 January 2021      Revised:  07 April 2021      Accepted manuscript online:  14 April 2021
PACS:  05.60.-k (Transport processes)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
Fund: Project supported by the Regional Joint Fund for Foundation and Applied Research Fund of Guangdong Province, China (Grant No. 2019A1515111200), Youth Innovation Talents Funds of Colleges and Universities in Guangdong Province, China (Grant No. 2018KQNCX287), the Science and Technology Program of Guangzhou, China (Grant No. 201904010202), the National Science Foundation of China (Grant No. 72071079), and the Science and Technology Program of Guangdong Province, China (Grant No. 2020A1414010010).
Corresponding Authors:  Weitiao Wu     E-mail:  ctwtwu@scut.edu.cn

Cite this article: 

Cong Zhai(翟聪), Weitiao Wu(巫威眺), and Songwen Luo(罗淞文) Heterogeneous traffic flow modeling with drivers' timid and aggressive characteristics 2021 Chin. Phys. B 30 100507

[1] Wu W T, Liu R H, Jin W Z and Ma C X 2019 Transport. Res. Part B. 121 275
[2] Wu W T, Li P, Liu R H, Jin W Z, Yao B Z, Xie Y Q and Ma C X 2020 Transport. Res. Part E 142 102041
[3] Wu W T, Liu R H, Jin W Z and Ma C X 2019 Transport. Res. Part E. 130 61
[4] Wu W T, Lin Y, Liu R H, Li Y H, Zhang Y and Ma C X 2020 IEEE Trans. Intel. Transport. Systems 1
[5] Zhai C and Wu W T 2018 Nonlinear Dynam. 93 2185
[6] Zhai C, Liu W M, Tan F G, Huang L and Song M L 2018 Transport. Plan. Techn. 39 801
[7] Zhai C and Wu W T 2019 Int. J. Mod. Phys. C 30 1950073
[8] Ma G Y, Ma M H, Liang S D, Wang Y S and Zhang Y Z 2020 Commun. Nonlinear Sci. 85 105221
[9] Sun Y Q, Ge H X and Cheng R J 2019 Physica A 521 752
[10] Sun Y Q, Ge H X and Cheng R J 2019 Physica A 527 121426
[11] Hua W, Yue Y X, Wei Z L, Cheng J H and Wang W R 2020 Physica A 556 124777
[12] Yang L, Zheng J R, Cheng Y and Ran B 2019 Physica A 535 122277
[13] Li Q L, Wong S C, Min J, Tian S and Wang B H 2016 Physica A 456 128
[14] Gupta A K and Katiyar V K 2007 Transportmetrica 3 73
[15] Gupta A K and Sharma S 2012 Chin. Phys. B 21 015201
[16] Gupta A K and Sharma S 2010 Chin. Phys. B 19 110503
[17] Gupta A K and Dhiman I 2015 Nonlinear Dynam. 79 663
[18] Zhai C and Wu W T 2020 Commun. Theor. Phys. 72 105004
[19] Zhai C and Wu W T 2020 Eur. Phys. J. B 93 52
[20] Gupta A K and Redhu P 2014 Nonlinear Dynam. 76 1001
[21] Redhu P and Gupta A K 2015 Physica A 421 249
[22] Zhai C and Wu W T 2021 Commun. Nonlinear Sci. 95 105667
[23] Zhai C and Wu W T 2020 Int. J. Mod. Phys. C 31 2050089
[24] Gupta A K and Redhu P 2013 Physica A 392 5622
[25] Sharma S 2016 Nonlinear Dynam. 86 2093
[26] Sharma S 2015 Nonlinear Dynam. 81 991
[27] Sharma S 2015 Physica A 421 401
[28] Bando M, Hasebe K, Nakayama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[29] Zhang J, Tang T Q and Yu S W 2018 Physica A 492 1831
[30] Jin Z Z, Li Z P, Cheng R J and Ge H X 2018 Physica A 507 278
[31] Li S K, Yang L X, Gao Z Y and Li K P 2014 ISA T. 53 1739
[32] Li Y F, Zhong Z Y, Zhang K B and Zheng T X 2019 Physica A 533 122022
[33] Guo L T, Zhao X M, Yu S W, Li X H and Shi Z K 2017 Physica A 471 436
[34] Zhang G, Zhao M, Sun D H, Liu W N and Li H M 2016 Physica A 442 532
[35] Li Y F, Sun D H, Liu W N, Zhang M, Zhao M, Liao X Y and Tang L 2011 Nonlinear Dynam. 66 15
[36] Yu L, Shi Z K and Li T 2014 Phys. Lett. A 378 348
[37] Ge H X, Meng X P, Cheng R J and Lo S M 2011 Physica A 390 3348
[38] Zhu H B and Dai S Q 2008 Physica A 387 3290
[39] Cao B G 2020 Physica A 539 122903
[40] Wang Y J, Song H and Cheng R J 2019 Physica A 515 440
[41] Liu D W, Shi Z K and Ai W H 2017 Commun. Nonlinear Sci. 47 139
[42] Peng G H and Cheng R J 2013 Physica A 392 3563
[43] Zhang J, Wang B, Li S B, Sun T and Wang T 2020 Physica A 540 123171
[44] Cheng J Z, Liu R H, Ngoduy D and Shi Z K 2016 Nonlinear Dynam. 85 2705
[45] Zhou T, Sun D H, Kang Y R, Li H M and Tian C 2014 Commun. Nonlinear Sci. 19 3820
[46] Tang T Q, He J, Yang S C and Shang H Y 2014 Physica A 413 583
[47] Peng G H, He H D and Lu W Z 2016 Physica A 442 197
[48] Cheng R J, Ge H X and Wang J F 2017 Phys. Lett. A 381 1302
[49] Sharma S 2015 Physica A 421 401
[50] Peng G H and Qing L 2016 Mod. Phy. Lett. B 30 1650351
[51] Wang Z H, Ge H X and Cheng R J 2020 Physica A 540 122988
[52] Tang T Q, Luo X F and Liu K 2016 Physica A 457 316
[53] Tang T Q, Li J G, Yang S C and Shang H Y 2015 Physica A 419 293
[54] Ge H X, Meng X P, Zhu H B and Li Z P 2014 Physica A 408 28
[55] Li Y F, Zhang L, Zheng H, He X Z, Peeta S, Zheng T X and Li Y G 2015 Nonlinear Dynam. 82 629
[56] Li Y F, Zhang L, Peeta S, Pan H G, Zheng T X, Li Y G and He X Z 2015 Nonlinear Dynam. 80 227
[57] Li Y F, Zhang L, Zhang B, Zheng T X, Feng H Z and Li Y G 2016 Nonlinear Dynam. 85 1901
[58] Wang P C, Yu G Z, Wu X K, Qin H M and Wang Y P 2018 Physica A 496 351
[59] Sun Y Q, Ge H X and Cheng R J 2019 Physica A 534 122377
[60] Li Y F, Zhang L, Peeta S, He X Z, Zheng T X and Li Y G 2016 Nonlinear Dynam. 85 2115
[61] Yu S W and Shi Z K 2015 Physica A 428 206
[62] Li Y F, Kang Y H, Yang B, Peeta S, Zhang L, Zheng T X and Li Y G 2016 Physica A 462 38
[63] Jin Y F and Hu H Y 2013 Commun. Nonlinear Sci. 18 1027
[64] Chen D, Sun D H, Zhao M, Yang L Y, Zhou T and Xie F 2018 Nonlinear Dynam. 92 1829
[65] Yang D, Qiu X P, Yu Dan, Sun R X and Pu Yun 2015 Physica A 424 62
[66] Li Q L, Wong S C, Jie M, Tian S and Wang B H 2016 Physica A 456 128
[67] Li Z P, Xu X, Xu S Z and Qian Y Q 2017 Commun. Nonlinear Sci. 42 132
[68] Sun F X, Wang J F, Cheng R J and Ge H X 2018 Phys. Lett. A 382 489
[69] Wang J F, Sun F X, Cheng R J and Ge H X 2018 Physica A 506 1113
[70] Li Z P, Li W Z, Xu S Z, Qian Y Q and Sun J 2015 Physica A 436 729
[71] Ren W L, Cheng R J and Ge H X 2021 Appl. Math. Comput. 401 126079
[72] Ren W L, Cheng R J and Ge H X 2021 Appl. Math. Model. 94 369
[73] Helbing D and Tilch B 1998 Phys. Rev. E 58 133
[74] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
[1] Identification of unstable individuals in dynamic networks
Dongli Duan(段东立), Tao Chai(柴涛), Xixi Wu(武茜茜), Chengxing Wu(吴成星), Shubin Si(司书宾), and Genqing Bian(边根庆). Chin. Phys. B, 2021, 30(9): 090501.
[2] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[3] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[4] Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system
Kuan-Lin Mu(穆宽林), Xing Chen(陈星), Zheng-Kang Wang(王正康), Yao-Jun Qiao(乔耀军), and Song Yu(喻松). Chin. Phys. B, 2021, 30(7): 074208.
[5] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[6] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[7] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[8] Improved nonlinear parabolized stability equations approach for hypersonic boundary layers
Shaoxian Ma(马绍贤), Yi Duan(段毅), Zhangfeng Huang(黄章峰), and Shiyong Yao(姚世勇). Chin. Phys. B, 2021, 30(5): 054701.
[9] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[10] Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100
Ao Chen(陈翱), Peng Wang(王鹏), Tao Lin(林涛), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), and Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2021, 30(4): 048506.
[11] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[12] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[13] Continuous non-autonomous memristive Rulkov model with extreme multistability
Quan Xu(徐权), Tong Liu(刘通), Cheng-Tao Feng(冯成涛), Han Bao(包涵), Hua-Gan Wu(武花干), and Bo-Cheng Bao(包伯成). Chin. Phys. B, 2021, 30(12): 128702.
[14] Stability analysis of hydro-turbine governing system based on machine learning
Yuansheng Chen(陈元盛) and Fei Tong(仝飞). Chin. Phys. B, 2021, 30(12): 120509.
[15] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
No Suggested Reading articles found!