Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 127801    DOI: 10.1088/1674-1056/abf7aa

Synthesis of ternary compound in H-S-Se system at high pressures

Xiao Zhang(张晓)1,2,†
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences(CAS), Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China
Abstract  The chemical reaction products of elemental sulfur (S), selenium (Se), and molecular hydrogen (H2) at high pressures and room temperature are probed by Raman spectroscopy. Two known compounds H2S and H2Se can be synthesized after laser heating at pressures lower than 1 GPa. Under further compression at room temperature, an H2S-H2Se and an H2S-H2Se-H2 van der Waals compounds are synthesized at 4 GPa and 6 GPa, respectively. The later is of guest-host structure and can be identified as (H2S)x(H2Se)(2-x)H2. It can be maintained up to 37 GPa at least, and the stability of its H2Se molecules is extended:the H-Se stretching mode can be detected at least to 36 GPa but disappears at 22 GPa in (H2Se)2H2. The pressure dependence of S-H and Se-H stretching modes of this ternary compound is in line with that of (H2S)2H2 and (H2Se)2H2, respectively. However, its hydrogen subsystem only shows the relevance to (H2S)2H2, indicating that this ternary compound can be viewed as H2Se-replaced partial H2S of (H2S)2H2.
Keywords:  hydride      high pressure      Raman spectroscopy  
Received:  13 February 2021      Revised:  08 April 2021      Accepted manuscript online:  14 April 2021
PACS:  78.30.-j (Infrared and Raman spectra)  
  82.40.Fp (Shock wave initiated reactions, high-pressure chemistry)  
  74.70.-b (Superconducting materials other than cuprates)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51672279, 51727806, 11874361, and 11774354), the Science Challenge Project, China (Grant No. TZ2016001), the CAS Innovation Fund (Grant No. CXJJ-19-B08), and the CASHIPS Director's Fund (Grant No. YZJJ201705).
Corresponding Authors:  Xiao Zhang     E-mail:

Cite this article: 

Xiao Zhang(张晓) Synthesis of ternary compound in H-S-Se system at high pressures 2021 Chin. Phys. B 30 127801

[1] Wigner E and Huntington H B 1935 J. Chem. Phys. 3 764
[2] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[3] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[4] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968
[5] Li Y, Hao J, Liu H, Li Y and Ma Y 2014 J. Chem. Phys. 140 174712
[6] Liu H, Naumov, Ii, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[7] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[8] Zhang X, Xu W, Wang Y, Jiang S, Gorelli F A, Greenberg E, Prakapenka V B and Goncharov A F 2018 Phys. Rev. B 97 064107
[9] Geballe Z M, Liu H, Mishra A K, Ahart M, Somayazulu M, Meng Y, Baldini M and Hemley R J 2018 Angew. Chem. Int. Ed. Engl. 57 688
[10] Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A and Oganov A R 2020 Mater. Today 33 36
[11] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
[12] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[13] Snider E, Dasenbrock-Gammon N, Mcbride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A and Dias R P 2020 Nature 586 373
[14] Errea I, Calandra M, Pickard C J, Nelson J, Needs R J, Li Y, Liu H, Zhang Y, Ma Y and Mauri F 2015 Phys. Rev. Lett. 114 157004
[15] Komelj M and Krakauer H 2015 Phys. Rev. B 92 205125
[16] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N and Ohishi Y 2016 Nat. Phys. 12 835
[17] Bernstein N, Hellberg C S, Johannes M D, Mazin I I and Mehl M J 2015 Phys. Rev. B 91 060511
[18] Errea I, Calandra M, Pickard C J, Nelson J R, Needs R J, Li Y, Liu H, Zhang Y, Ma Y and Mauri F 2016 Nature 532 81
[19] Heil C and Boeri L 2015 Phys. Rev. B 92 060508(R)
[20] Liu B, Cui W, Shi J, Zhu L, Chen J, Lin S, Su R, Ma J, Yang K, Xu M, Hao J, Durajski A P, Qi J, Li Y and Li Y 2018 Phys. Rev. B 98 174101
[21] Amsler M 2019 Phys. Rev. B 99 060102
[22] Chang P H, Silayi S, Papaconstantopoulos D A and Mehl M J 2020 J. Phys. Chem. Solids 139 109315
[23] Duan D, Huang X, Tian F, Li D, Yu H, Liu Y, Ma Y, Liu B and Cui T 2015 Phys. Rev. B 91 180502
[24] Goncharov A F, Lobanov S S, Kruglov I, Zhao X M, Chen X J, Oganov A R, Konopkova Z and Prakapenka V B 2016 Phys. Rev. B 93 174105
[25] Goncharov A F, Lobanov S S, Prakapenka V B and Greenberg E 2017 Phys. Rev. B 95 140101
[26] Strobel T A, Ganesh P, Somayazulu M, Kent P R C and Hemley R J 2011 Phys. Rev. Lett. 107 255503
[27] Guigue B, Marizy A and Loubeyre P 2017 Phys. Rev. B 95 020104(R)
[28] Pace E J, Liu X D, Dalladay-Simpson P, Binns J, Peña-Alvarez M, Attfield J P, Howie R T and Gregoryanz E 2020 Phys. Rev. B 101 174511
[29] Bykova E, Bykov M, Chariton S, Prakapenka V B, Glazyrin K, Aslandukov A, Aslandukova A, Criniti G, Kurnosov A and Goncharov A F 2021 Phys. Rev. B 103 L140105
[30] Pace E J, Binns J, Pena Alvarez M, Dalladay-Simpson P, Gregoryanz E and Howie R T 2017 J. Chem. Phys. 147 184303
[31] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[32] Goncharov A F 2012 International Journal of Spectroscopy 2012 617528
[33] Paldus B A, Schlueter S A and Anderson A 1992 J. Raman Spectrosc. 23 87
[34] Ward A T 1968 J. Phys. Chem. 72 4133
[35] Shimizu H, Yamaguchi H, Sasaki S, Honda A, Endo S and Kobayashi M 1995 Phys. Rev. B 51 9391
[36] Loveday J S, Nelmes R J, Klotz S, Besson J M and Hamel G 2000 Phys. Rev. Lett. 85 1024
[37] Mao H K and Hemley R J 1994 Rev. Mod. Phys. 66 671
[38] Kim D Y, Scheicher R H, Mao H K, Kang T W and Ahuja R 2010 Proc. Natl. Acad. Sci. USA 107 2793
[39] Tanaka K, Tse J S and Liu H 2017 Phys. Rev. B 96 100502
[1] Two different emission enhancement of trans-stilbene crystal under high pressure: Different evolution of structure
Yarong Gu(古雅荣), Guicheng Shao(邵贵成), Zhumei Tian(田竹梅), Haixia Li(李海霞), Kai Wang(王凯), and Bo Zou(邹勃). Chin. Phys. B, 2022, 31(1): 017901.
[2] Pressure dependence of the thermal stability in LiMn2O4
Yan Zeng(曾彦), Hao Liang(梁浩), Shixue Guan(管诗雪), Junpu Wang(王俊普), Wenjia Liang(梁文嘉), Mengyang Huang(黄梦阳), and Fang Peng(彭放). Chin. Phys. B, 2022, 31(1): 016104.
[3] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[4] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[5] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[6] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
[7] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[8] Anomalous bond-length behaviors of solid halogens under pressure
Min Wu(吴旻), Ye-Feng Wu(吴烨峰), and Yi Ma(马毅). Chin. Phys. B, 2021, 30(7): 076401.
[9] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[10] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[11] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[12] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[13] Electrochemical liftoff of freestanding GaN by a thick highly conductive sacrificial layer grown by HVPE
Xiao Wang(王骁), Yu-Min Zhang(张育民), Yu Xu(徐俞), Zhi-Wei Si(司志伟), Ke Xu(徐科), Jian-Feng Wang(王建峰), and Bing Cao(曹冰). Chin. Phys. B, 2021, 30(6): 067306.
[14] Ground-state structure and physical properties of YB 3 predicted from first-principles calculations
Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华). Chin. Phys. B, 2021, 30(4): 046101.
[15] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
No Suggested Reading articles found!