Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056111    DOI: 10.1088/1674-1056/abf10d
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys

Shijun Zhao(赵仕俊)
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
Abstract  Concentrated solid-solution alloys (CSAs) have demonstrated promising irradiation resistance depending on their compositions. Under irradiation, various defects can be produced. One of the most important parameters characterizing the defect production and the resulting defect number is the threshold displacement energies (Ed). In this work, we report the results of Ed values in a series of Ni-Fe-Cr concentrated solid solution alloys through molecular dynamics (MD) simulations. Based on several different empirical potentials, we show that the differences in the Ed values and its angular dependence are mainly due to the stiffness of the potential in the intermediate regime. The influences of different alloying elements and temperatures on Ed values in different CSAs are further evaluated by calculating the defect production probabilities. Our results suggest a limited influence of alloying elements and temperature on Ed values in concentrated alloys. Finally, we discuss the relationship between the primary damage and Ed values in different alloys. Overall, this work presents a thorough study on the Ed values in concentrated alloys, including the influence of empirical potentials, their angular dependence, temperature dependence, and effects on primary defect production.
Keywords:  irradiation effects      molecular dynamics      threshold displacement energies      concentrated high-entropy alloys  
Received:  11 January 2021      Revised:  19 March 2021      Accepted manuscript online:  23 March 2021
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  61.80.-x (Physical radiation effects, radiation damage)  
  61.82.-d (Radiation effects on specific materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975193), City University of Hong Kong (Grant No. 9610425), Research Grants Council of Hong Kong, China (Grant No. 21200919), Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2019A1515011528), Shenzhen Basic Research Program (Grant No. JCYJ20190808181601662), and Sichuan Science and Technology Program (Grant No. 2021YJ0516).
Corresponding Authors:  Shijun Zhao     E-mail:  shijzhao@cityu.edu.hk

Cite this article: 

Shijun Zhao(赵仕俊) Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys 2021 Chin. Phys. B 30 056111

[1] Gao M C, Yeh J W, Liaw P K and Zhang Y 2016 High-Entropy Alloys
[2] Tsai M H and Yeh J W 2014 Mater. Res. Lett. 2 107
[3] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P and Ritchie R O 2014 Science. 345 1153
[4] Miracle D B and Senkov O N 2017 Acta Mater. 122 448
[5] Zhang Y, Stocks G M, Jin K, Lu C, Bei H, Sales B C, Wang L, Béland L K, Stoller R E, Samolyuk G D, Caro M, Caro A and Weber W J 2015 Nat. Commun. 6 8736
[6] Zhang Y, Zhao S, Weber W J, Nordlund K, Granberg F, Djurabekova F, Granbergc F and Djurabekova F 2017 Curr. Opin. Solid State Mater. Sci. 21 221
[7] Zhao S, Zhang Y and Weber W J 2020 Reference Module in Materials Science and Materials Engineering (Elsevier)
[8] Zhao S 2020 J. Mater. Res. 35 1103
[9] Zhang Y, Jin K, Xue H, Lu C, Olsen R J, Beland L K, Ullah M W, Zhao S, Bei H, Aidhy D S, Samolyuk G D, Wang L, Caro M, Caro A, Stocks G M, Larson B C, Robertson I M, Correa A A and Weber W J 2016 J. Mater. Res. 31 2363
[10] Zhao S, Weber W J and Zhang Y 2017 Jom 69 2084
[11] Anon 2012 S.I. Golubov, A.V. Barashev, R.E. Stoller, (Radiation damage theory, in: R.J.M. Konings (Ed.), Comprehensive Nuclear Materials, vol. 1, Elsevier, Amsterdam, 2012, pp. 357-391)
[12] Osetsky Y N, Béland L K and Stoller R E 2016 Acta Mater. 115 364
[13] Zhao S, Osetsky Y, Barashev A V and Zhang Y 2019 Acta Mater. 173 184
[14] Kinchin G H and Pease R S 1955 Reports Prog. Phys. 18 1
[15] Norgett M, Robinson M and Torrens I 1975 Nucl. Eng. Des. 33 50
[16] Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L and Simeone D 2018 Nat. Commun. 9 1084
[17] Gao F and Bacon D J 1993 Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 67 289
[18] Dimitrov C, Sitaud B and Dimitrov O 1994 J. Nucl. Mater. 208 53
[19] Maury F, Biget M, Vajda P, Lucasson A and Lucasson P 1976 Phys. Rev. B 14 5303
[20] Anon threshold displacement energy in Ni, Al and B2 NiAl-IOPscience
[21] Béland L K, Lu C, Osetskiy Y N, Samolyuk G D, Caro A, Wang L and Stoller R E J 2016 J. Appl. Phys. 119 085901
[22] Liu B, Yuan F, Jin K, Zhang Y and Weber W J 2015 J. Phys.: Condens. Matter 27 435006
[23] Zhao S, Liu B, Samolyuk G D, Zhang Y and Weber W J 2020 J. Nucl. Mater. 529 151941
[24] Nordlund K, Wallenius J and Malerba L 2006 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 246 322
[25] Robinson M, Marks N A and Lumpkin G R 2012 Phys. Rev. B 86 134105
[26] Beeler B, Asta M, Hosemann P and Gronbech-Jensen N J 2016 J. Nucl. Mater. 474 113
[27] Plimpton S 1995 J. Comput. Phys. 117 1
[28] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[29] Bonny G, Castin N and Terentyev D 2013 Model. Simul. Mater. Sci. Eng. 21 085004
[30] Bonny G, Pasianot R C and Malerba L 2009 Model. Simul. Mater. Sci. Eng. 17 25010
[31] Bonny G, Terentyev D, Pasianot R C, Poncé S and Bakaev A 2011 Model. Simul. Mater. Sci. Eng. 19 85008
[32] Béland L K, Tamm A, Mu S, Samolyuk G D D, Osetsky Y N N, Aabloo A, Klintenberg M, Caro A and Stoller R E E 2017 Comput. Phys. Commun. 219 11
[33] Bacon D J, Deng H F and Gao F 1993 J. Nucl. Mater. 205 84
[34] Byggmästar J, Granberg F and Nordlund K 2018 J. Nucl. Mater. 508 530
[35] Bourret A 1971 Phys. Status Solidi 4 813
[36] Lucasson P G and Walker R M 1962 Phys. Rev. 127 485
[37] Vörtler K, Juslin N, Bonny G, Malerba L and Nordlund K 2011 J. Phys. Condens. Matter 23 355007
[38] Zhao S, Stocks G M and Zhang Y 2016 Phys. Chem. Chem. Phys. 18 24043
[39] Zhao S, Osetsky Y and Zhang Y 2017 Acta Mater. 128 391
[40] Becquart C S, Souidi A and Hou M 2002 Phys. Rev. B 66 1
[41] Terentyev D, Lagerstedt C, Olsson P, Nordlund K, Wallenius J, Becquart C S and Malerba L 2006 J. Nucl. Mater. 351 65
[42] Stoller R E, Tamm A, Béland L K, Samolyuk G D, Stocks G M, Caro A, Slipchenko L V, Osetsky Y N, Aabloo A, Klintenberg M and Wang Y 2016 J. Chem. Theory Comput. 12 2871
[43] Béland L K, Osetsky Y N and Stoller R E 2016 Acta Mater. 116 136
[1] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[2] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[3] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[6] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[7] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[8] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[9] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[10] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[13] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[14] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
[15] A study of cavitation nucleation in pure water using molecular dynamics simulation
Hua Xie(谢华), Yuequn Xu(徐跃群), and Cheng Zhong(钟成). Chin. Phys. B, 2022, 31(11): 114701.
No Suggested Reading articles found!