Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056111    DOI: 10.1088/1674-1056/abf10d
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys

Shijun Zhao(赵仕俊)
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
Abstract  Concentrated solid-solution alloys (CSAs) have demonstrated promising irradiation resistance depending on their compositions. Under irradiation, various defects can be produced. One of the most important parameters characterizing the defect production and the resulting defect number is the threshold displacement energies (Ed). In this work, we report the results of Ed values in a series of Ni-Fe-Cr concentrated solid solution alloys through molecular dynamics (MD) simulations. Based on several different empirical potentials, we show that the differences in the Ed values and its angular dependence are mainly due to the stiffness of the potential in the intermediate regime. The influences of different alloying elements and temperatures on Ed values in different CSAs are further evaluated by calculating the defect production probabilities. Our results suggest a limited influence of alloying elements and temperature on Ed values in concentrated alloys. Finally, we discuss the relationship between the primary damage and Ed values in different alloys. Overall, this work presents a thorough study on the Ed values in concentrated alloys, including the influence of empirical potentials, their angular dependence, temperature dependence, and effects on primary defect production.
Keywords:  irradiation effects      molecular dynamics      threshold displacement energies      concentrated high-entropy alloys  
Received:  11 January 2021      Revised:  19 March 2021      Accepted manuscript online:  23 March 2021
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  61.80.-x (Physical radiation effects, radiation damage)  
  61.82.-d (Radiation effects on specific materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975193), City University of Hong Kong (Grant No. 9610425), Research Grants Council of Hong Kong, China (Grant No. 21200919), Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2019A1515011528), Shenzhen Basic Research Program (Grant No. JCYJ20190808181601662), and Sichuan Science and Technology Program (Grant No. 2021YJ0516).
Corresponding Authors:  Shijun Zhao     E-mail:  shijzhao@cityu.edu.hk

Cite this article: 

Shijun Zhao(赵仕俊) Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys 2021 Chin. Phys. B 30 056111

[1] Gao M C, Yeh J W, Liaw P K and Zhang Y 2016 High-Entropy Alloys
[2] Tsai M H and Yeh J W 2014 Mater. Res. Lett. 2 107
[3] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P and Ritchie R O 2014 Science. 345 1153
[4] Miracle D B and Senkov O N 2017 Acta Mater. 122 448
[5] Zhang Y, Stocks G M, Jin K, Lu C, Bei H, Sales B C, Wang L, Béland L K, Stoller R E, Samolyuk G D, Caro M, Caro A and Weber W J 2015 Nat. Commun. 6 8736
[6] Zhang Y, Zhao S, Weber W J, Nordlund K, Granberg F, Djurabekova F, Granbergc F and Djurabekova F 2017 Curr. Opin. Solid State Mater. Sci. 21 221
[7] Zhao S, Zhang Y and Weber W J 2020 Reference Module in Materials Science and Materials Engineering (Elsevier)
[8] Zhao S 2020 J. Mater. Res. 35 1103
[9] Zhang Y, Jin K, Xue H, Lu C, Olsen R J, Beland L K, Ullah M W, Zhao S, Bei H, Aidhy D S, Samolyuk G D, Wang L, Caro M, Caro A, Stocks G M, Larson B C, Robertson I M, Correa A A and Weber W J 2016 J. Mater. Res. 31 2363
[10] Zhao S, Weber W J and Zhang Y 2017 Jom 69 2084
[11] Anon 2012 S.I. Golubov, A.V. Barashev, R.E. Stoller, (Radiation damage theory, in: R.J.M. Konings (Ed.), Comprehensive Nuclear Materials, vol. 1, Elsevier, Amsterdam, 2012, pp. 357-391)
[12] Osetsky Y N, Béland L K and Stoller R E 2016 Acta Mater. 115 364
[13] Zhao S, Osetsky Y, Barashev A V and Zhang Y 2019 Acta Mater. 173 184
[14] Kinchin G H and Pease R S 1955 Reports Prog. Phys. 18 1
[15] Norgett M, Robinson M and Torrens I 1975 Nucl. Eng. Des. 33 50
[16] Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L and Simeone D 2018 Nat. Commun. 9 1084
[17] Gao F and Bacon D J 1993 Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 67 289
[18] Dimitrov C, Sitaud B and Dimitrov O 1994 J. Nucl. Mater. 208 53
[19] Maury F, Biget M, Vajda P, Lucasson A and Lucasson P 1976 Phys. Rev. B 14 5303
[20] Anon threshold displacement energy in Ni, Al and B2 NiAl-IOPscience
[21] Béland L K, Lu C, Osetskiy Y N, Samolyuk G D, Caro A, Wang L and Stoller R E J 2016 J. Appl. Phys. 119 085901
[22] Liu B, Yuan F, Jin K, Zhang Y and Weber W J 2015 J. Phys.: Condens. Matter 27 435006
[23] Zhao S, Liu B, Samolyuk G D, Zhang Y and Weber W J 2020 J. Nucl. Mater. 529 151941
[24] Nordlund K, Wallenius J and Malerba L 2006 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 246 322
[25] Robinson M, Marks N A and Lumpkin G R 2012 Phys. Rev. B 86 134105
[26] Beeler B, Asta M, Hosemann P and Gronbech-Jensen N J 2016 J. Nucl. Mater. 474 113
[27] Plimpton S 1995 J. Comput. Phys. 117 1
[28] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[29] Bonny G, Castin N and Terentyev D 2013 Model. Simul. Mater. Sci. Eng. 21 085004
[30] Bonny G, Pasianot R C and Malerba L 2009 Model. Simul. Mater. Sci. Eng. 17 25010
[31] Bonny G, Terentyev D, Pasianot R C, Poncé S and Bakaev A 2011 Model. Simul. Mater. Sci. Eng. 19 85008
[32] Béland L K, Tamm A, Mu S, Samolyuk G D D, Osetsky Y N N, Aabloo A, Klintenberg M, Caro A and Stoller R E E 2017 Comput. Phys. Commun. 219 11
[33] Bacon D J, Deng H F and Gao F 1993 J. Nucl. Mater. 205 84
[34] Byggmästar J, Granberg F and Nordlund K 2018 J. Nucl. Mater. 508 530
[35] Bourret A 1971 Phys. Status Solidi 4 813
[36] Lucasson P G and Walker R M 1962 Phys. Rev. 127 485
[37] Vörtler K, Juslin N, Bonny G, Malerba L and Nordlund K 2011 J. Phys. Condens. Matter 23 355007
[38] Zhao S, Stocks G M and Zhang Y 2016 Phys. Chem. Chem. Phys. 18 24043
[39] Zhao S, Osetsky Y and Zhang Y 2017 Acta Mater. 128 391
[40] Becquart C S, Souidi A and Hou M 2002 Phys. Rev. B 66 1
[41] Terentyev D, Lagerstedt C, Olsson P, Nordlund K, Wallenius J, Becquart C S and Malerba L 2006 J. Nucl. Mater. 351 65
[42] Stoller R E, Tamm A, Béland L K, Samolyuk G D, Stocks G M, Caro A, Slipchenko L V, Osetsky Y N, Aabloo A, Klintenberg M and Wang Y 2016 J. Chem. Theory Comput. 12 2871
[43] Béland L K, Osetsky Y N and Stoller R E 2016 Acta Mater. 116 136
[1] Polymorph selection of magnesium under different pressures: A simulation study
Wei Liu(刘维), Boqiang Wu(吴博强), Ze'an Tian(田泽安), Yunfei Mo(莫云飞), Tingfei Xi(奚廷斐), Zhiyi Wan(万子义), Rangsu Liu(刘让苏), and Hairong Liu(刘海蓉). Chin. Phys. B, 2022, 31(1): 016103.
[2] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[3] Modification of short-range repulsive interactions in ReaxFF reactive force field for Fe-Ni-Al alloy
Huaqiang Chen(陈华强), Lin Lang(稂林), Shuaiyu Yi(易帅玉), Jinlong Du(杜进隆), Guangdong Liu(刘广东), Lixia Liu(刘丽霞), Yufei Wang(王宇飞), Yuehui Wang(王悦辉), Huiqiu Deng(邓辉球), and Engang Fu(付恩刚). Chin. Phys. B, 2021, 30(8): 086110.
[4] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[5] Heredity of clusters in the rapidly cooling processes of Al-doped Zr50Cu50 melts and its correlation with the glass-forming ability
Dadong Wen(文大东), Yonghe Deng(邓永和), Ming Gao(高明), and Zean Tian(田泽安). Chin. Phys. B, 2021, 30(7): 076101.
[6] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[7] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[8] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[9] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[10] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[11] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[12] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[13] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[14] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[15] Thermal and mechanical properties and micro-mechanism of SiO2/epoxy nanodielectrics
Tian-Yu Wang(王天宇), Gui-Xin Zhang(张贵新), and Da-Yu Li(李大雨). Chin. Phys. B, 2021, 30(12): 128101.
No Suggested Reading articles found!