Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 074208    DOI: 10.1088/1674-1056/abf105

Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system

Kuan-Lin Mu(穆宽林)1, Xing Chen(陈星)2, Zheng-Kang Wang(王正康)1, Yao-Jun Qiao(乔耀军)1,†, and Song Yu(喻松)2,‡
1 The State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  We propose a physical model of estimating noise and asymmetry brought by high isolation Bi-directional erbium-doped fiber amplifiers (Bi-EDFAs), no spontaneous lasing even with high gain, in longdistance fiber-optic time and frequency (T/F) synchronization system. It is found that the Rayleigh scattering noise can be suppressed due to the high isolation design, but the amplified spontaneous emission (ASE) noise generated by the high isolation Bi-EDFA and the bidirectional asymmetry of the transmission link caused by the high isolation Bi-EDFA will deteriorate the stability of the system. The calculated results show that under the influence of ASE noise, the frequency instability of a 1200 km system composed of 15 high isolation Bi-EDFAs is 1.773×10-13/1 s. And the instability caused by asymmetry is 2.6064×10-16/30000-35000 s if the total asymmetric length of the bidirectional link length is 30 m. The intensity noises originating from the laser and detector, the transfer delay fluctuations caused by the variation in ambient temperature and the jitter in laser output wavelength are also studied. The experiment composed of three high isolation Bi-EDFAs is done to confirm the theoretical analysis. In summary, the paper shows that the short-term instability of the T/F synchronization system composed of high isolation Bi-EDFAs is limited by the accumulation of ASE noise of amplifiers and the laser frequency drift, while the long-term instability is limited by the periodic variation in ambient temperature and the asymmetry of the amplifiers. The research results are useful for pointing out the direction to improve the stability of the fiber-optic T/F synchronization system.
Keywords:  time and frequency synchronization      erbium-doped fiber amplifier      instability      Allan deviation  
Received:  18 February 2021      Revised:  15 March 2021      Accepted manuscript online:  23 March 2021
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.79.-e (Optical elements, devices, and systems)  
  07.60.Vg (Fiber-optic instruments)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61701040, 61771062, and 61871044), the Youth Program of the National Natural Science Foundation of China (Grant No. 61901046), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2019XD-A18 and 2019PTB-004), and the Youth Research and Innovation Program of BUPT (Grant No. 2017RC13).
Corresponding Authors:  Yao-Jun Qiao, Song Yu     E-mail:;

Cite this article: 

Kuan-Lin Mu(穆宽林), Xing Chen(陈星), Zheng-Kang Wang(王正康), Yao-Jun Qiao(乔耀军), and Song Yu(喻松) Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system 2021 Chin. Phys. B 30 074208

[1] Amemiya M, Imae M, Fujii Y, Suzuyama, T, Hong F L and Takamoto M 2010 IEEE Trans. Instrum. Meas. 59 631
[2] Terra O, Groche G and Schnatz H 2010 Opt. Express 18 16102
[3] Lopez O, Kanj A, Pottie P E, Rovera D, Achkar J, Chardonnet C, Amy-Klein A and Santarelli G 2012 Appl. Phys. B 110 3
[4] Kim J, Schnatz H, Wu D S, Marra G, Richardson D J and Slavík R 2015 Opt. Lett. 40 4198
[5] Chen X, Lu J L, Cui Y F, Zhang J, Lu X, Tian X S, Ci C, Liu B, Wu H, Tang T S, Shi K B and Zhang Z G 2015 Sci. Rep. 5 18343
[6] Shang J M, Jiang T W, Liu C X, Chen X, Lu Y M, Yu S and Guo H 2018 Opt. Express 26 33888
[7] Liu C X, Jiang T W, Chen M S, Yu S, Wu R H, Shang J M, Duan J T and Gu W Y 2016 Opt. Express 24 23376
[8] Śliwczyński Ł, Krehlik P, Czubla A, Buczek Łand Lipiński M 2013 Metrologia 50 133
[9] Zhang H, Wu G L, Hu L, Li X M and Chen J P 2015 IEEE Photon. J. 7 1
[10] Raupach S M F, Koczwara A and Grosche G 2014 Opt. Express 22 26537
[11] Calonico D, Bertaccho E K, Calosso C E, Clivati C, Costanzo G A, Frittelli M, Godone A, Mura A, Poli N, Sutyrin D V, Tino G, Zucco M E and Levi F 2014 Appl. Phys. B 117 979
[12] Zhang C, Chen B Q and Li Z Y 2016 Chin. Phys. B 25 095203
[13] Chen L, Yang F R, Su T, Bao W Y, Yan B, Chen S and Li R B 2017 Chin. Phys. B 26 025205
[14] Chen X, Zhang J, Lu J L, Lu X, Tian X S, Liu B, Wu H, Tang T S, Shi K B and Zhang Z G 2015 Opt. Lett. 40 371
[15] Śliwczyński Ł, Krehlik P, Buczek Łand Lipiński M 2012 IEEE Trans. Instrum. Meas. 61 2573
[16] Śliwczyński Łand Ko łodziej J 2013 IEEE Trans. Instrum. Meas. 62 253
[17] Li X Y, Zhu Y, Lu L, Li D L and Zeng Z L 2014 Journal of Military Communications Technology 35 17
[18] Śliwczyński Ł, Krehlik P and Lipiński M 2010 Meas. Sci. Technol. 21 075302
[19] Li D L, Cheng Q M, Zhang B F, Lu L, Lei P J and Li X Y 2014 Laser & Optoelectronics Progress 51 010602 (in Chinese)
[20] Primas L E, Logan R T and Lutes G F 1989 IEEE 43rd Annual Symposium on Frequency Control Denver, CO, USA, May 31-June 2, 1989, p. 202
[21] Yang F 2013 Studies on Single-frequency Fiber Laser and Fiber-optic Joint Time and Frequency Transfer (Ph.D. Dissertation) (Shanghai: Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences) (in Chinese)
[22] Amemiya M, Imae M, Fujii Y, Suzuyama T and Ohshima S 2008 IEEE Trans. Instrum. Meas. 57 878
[23] Chen W, Cheng N, Liu Q, Wang J L, Feng Z T, Fei Y, Han S L, Gui Y Z and Cai H W 2016 Chinese J. Lasers 43 0706001
[24] Kikuchi K 1989 IEEE J. Quantum Elect. 25 684
[25] Liu Q, Chen W, Xu D, Cheng N, Yang F, Gui Y Z, Cai H W and Han S S 2016 Chinese J. Lasers 43 0305006
[26] Liang J X, Liu C X, Hu F, Zhou S J, Yu S and Qiao Y J 2019 Opt. Commun. 445 161
[1] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[2] Interaction region of magnon-mediated spin torques and novel magnetic states
Zai-Dong Li(李再东), Qi-Qi Guo(郭奇奇), Yong Guo(郭永), Peng-Bin He(贺鹏斌), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(10): 107506.
[3] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[4] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[5] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[6] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[7] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
[8] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[9] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[10] The E×B drift instability in Hall thruster using 1D PIC/MCC simulation
Zahra Asadi, Mehdi Sharifian, Mojtaba Hashemzadeh, Mahmood Borhani Zarandi, Hamidreza Ghomi Marzdashti. Chin. Phys. B, 2020, 29(2): 025204.
[11] Characterization and optimization of AlGaN/GaN metal-insulator semiconductor heterostructure field effect transistors using supercritical CO2/H2O technology
Meihua Liu(刘美华), Zhangwei Huang(黄樟伟), Kuan-Chang Chang(张冠张), Xinnan Lin(林信南), Lei Li(李蕾), and Yufeng Jin(金玉丰). Chin. Phys. B, 2020, 29(12): 127101.
[12] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[13] Jeans gravitational instability with κ-deformed Kaniadakis distribution in Eddington-inspired Born–Infield gravity
Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), Hui Chen(陈辉), and San-Qiu Liu(刘三秋)$. Chin. Phys. B, 2020, 29(11): 110401.
[14] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[15] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
No Suggested Reading articles found!