Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067402    DOI: 10.1088/1674-1056/abf100
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11

Chun-Hua Chen(陈春华)1,2, Yong-Hui Zhou(周永惠)1,†, Ying Zhou(周颖)3, Yi-Fang Yuan(袁亦方)1,2, Chao An(安超)3, Xu-Liang Chen(陈绪亮)1, Zhao-Ming Tian(田召明)4, and Zhao-Rong Yang(杨昭荣)1,3,5,‡
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;
2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China;
3 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
4 School of Physics, and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China;
5 High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China
Abstract  The geometrically frustrated iridate La3Ir3O11 with strong spin-orbit coupling and fractional valence was recently predicted to be a quantum spin liquid candidate at ambient conditions. Here, we systematically investigate the evolution of structural and electronic properties of La3Ir3O11 under high pressure. Electrical transport measurements reveal an abnormal insulating behavior rather than metallization above a critical pressure Pc ~38.7 GPa. Synchrotron x-ray diffraction (XRD) experiments indicate the stability of the pristine cubic KSbO3-type structure up to 73.1 GPa. Nevertheless, when the pressure gradually increases across Pc, the bulk modulus gets enhanced and the pressure dependence of bond length dIr-Ir undergoes a slope change. Consistent with the XRD data, detailed analyses of Raman spectra reveal an abnormal redshift of Raman mode and a change of Raman intensity around Pc. Our results demonstrate that the pressure-induced insulating behavior in La3Ir3O11 can be assigned to the structural modification, such as the distortion of IrO6 octahedra. These findings will shed light on the emergent abnormal insulating behavior in other 5d iridates reported recently.
Keywords:  high pressure      5d iridates      semimetal-insulator transition      crystal structure  
Received:  21 February 2021      Revised:  05 March 2021      Accepted manuscript online:  23 March 2021
PACS:  74.62.Fj (Effects of pressure)  
  72.80.Ga (Transition-metal compounds)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305704 and 2016YFA0401804), the National Natural Science Foundation of China (Grant Nos. U1632275, U1932152, 11874362, 11704387, 11804344, 11804341, 11974016, U19A2093, and U1832209), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1808085MA06, 2008085QA40, and 1908085QA18), the Users with Excellence Project of Hefei Center CAS (Grant No. 2020HSC-UE015), and the Collaborative Innovation Program of Hefei Science Center CAS (Grant No. 2020HSC-CIP014). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province under Contract No. AHHM-FX-2020-02. Yonghui Zhou was supported by the Youth Innovation Promotion Association CAS (Grant No. 2020443).
Corresponding Authors:  Yong-Hui Zhou, Zhao-Rong Yang     E-mail:  yhzhou@hmfl.ac.cn;zryang@issp.ac.cn

Cite this article: 

Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣) Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11 2021 Chin. Phys. B 30 067402

[1] Cao G and Schlottmann P 2018 Rep. Prog. Phys. 81 042502
[2] Pesin D and Balents L 2010 Nat. Phys. 6 376
[3] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[4] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H and Arima T 2009 Science 323 1329
[5] Okamoto Y, Nohara M, Aruga-Katori H and Takagi H 2007 Phys. Rev. Lett. 99 137207
[6] Chaloupka J, Jackeli G and Khaliullin G 2010 Phys. Rev. Lett. 105 027204
[7] Choi S K, Coldea R, Kolmogorov A N, Lancaster T, Mazin I I, Blundell S J, Radaelli P G, Singh Y, Gegenwart P, Choi K R, Cheong S W, Baker P J, Stock C and Taylor J 2012 Phys. Rev. Lett. 108 127204
[8] Rau J G, Lee E K-H and Kee H-Y 2016 Annu. Rev. Condens. Matter Phys. 7 195
[9] Moon S J, Jin H, Kim K W, Choi W S, Lee Y S, Yu J, Cao G, Sumi A, Funakubo H, Bernhard C and Noh T W 2008 Phys. Rev. Lett. 101 226402
[10] Ramirez A P 1994 Annu. Rev. Mat. Sci. 24 453
[11] Abraham F, Trehoux J and Thomas D 1979 J. Less-Common Metals 63 57
[12] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G and Rotenberg E 2008 Phys. Rev. Lett. 101 076402
[13] Abraham F, Trehoux J, Thomas D and Wagner F E 1982 J. Less-Common Metals 84 245
[14] Singh V and Pulikkotil J J 2017 Mater. Chem. Phys. 186 592
[15] Aoyama T, Emi K, Tabata C, Nambu Y, Nakao H, Yamauchi T and Ohgushi K 2019 J. Phys. Soc. Jpn. 88 093706
[16] Yang J, Wang J R, Zhen W L, Ma L, Ling L S, Tong W, Zhang C J, Pi L and Zhu W K 2019 Phys. Rev. B 100 205107
[17] Anderson P W 1987 Science 235 1196
[18] Chen C, Zhou Y, Chen X, Han T, An C, Zhou Y, Yuan Y, Zhang B, Wang S, Zhang R, Zhang L, Zhang C, Yang Z, DeLong L E and Cao G 2020 Phys. Rev. B 101 144102
[19] Haskel D, Fabbris G, Zhernenkov M, Kong P P, Jin C Q, Cao G and van Veenendaal M 2012 Phys. Rev. Lett. 109 027204
[20] Ding Y, Yang L, Chen C C, Kim H S, Han M J, Luo W, Feng Z, Upton M, Casa D, Kim J, Gog T, Zeng Z, Cao G, Mao H K and van Veenendaal M 2016 Phys. Rev. Lett. 116 216402
[21] Hermann V, Ebad-Allah J, Freund F, Pietsch I M, Jesche A, Tsirlin A A, Deisenhofer J, Hanfland M, Gegenwart P and Kuntscher C A 2017 Phys. Rev. B 96 195137
[22] Hermann V, Altmeyer M, Ebad-Allah J, Freund F, Jesche A, Tsirlin A A, Hanfland M, Gegenwart P, Mazin I I, Khomskii D I, Valentí R and Kuntscher C A 2018 Phys. Rev. B 97 020104
[23] Hermann V, Ebad-Allah J, Freund F, Jesche A, Tsirlin A A, Gegenwart P and Kuntscher C A 2019 Phys. Rev. B 99 235116
[24] Kurosaki Y, Shimizu Y, Miyagawa K, Kanoda K and Saito G 2005 Phys. Rev. Lett. 95 177001
[25] Shimizu Y, Hiramatsu T, Maesato M, Otsuka A, Yamochi H, Ono A, Itoh M, Yoshida M, Takigawa M, Yoshida Y and Saito G 2016 Phys. Rev. Lett. 117 107203
[26] Hu K, Zhou Z, Wei Y W, Li C K and Feng J 2018 Phys. Rev. B 98 100103
[27] Zhang Z, Yin Y, Ma X, Liu W, Li J, Jin F, Ji J, Wang Y, Wang X, Yu X and Zhang Q 2020 arXiv:2003.11479
[28] Jia Y T, Gong C S, Liu Y X, Zhao J-F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M and Jin C Q 2020 Chin. Phys. Lett. 37 097404
[29] Prescher C and Prakapenka V B 2015 High Pressure Res. 35 223
[30] Toby B H and Von Dreele R B 2013 J. Appl. Cryst. 46 544
[31] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[32] Birch F 1947 Phys. Rev. 71 809
[33] Zhao H, Tan D, Tian Y, He Y, Li Y, Li X, Yang K, Chen B and Xiao W 2018 High Pressure Res. 38 232
[1] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[2] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[3] Ground-state structure and physical properties of YB 3 predicted from first-principles calculations
Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华). Chin. Phys. B, 2021, 30(4): 046101.
[4] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[5] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[6] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[7] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[8] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[9] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[10] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[11] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[12] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[13] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[14] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[15] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
No Suggested Reading articles found!