Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 084211    DOI: 10.1088/1674-1056/abeee4
Special Issue: SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC—Optical field manipulation Prev   Next  

Bound states in the continuum on perfect conducting reflection gratings

Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专)
College of Physics, Chongqing University, Chongqing 401331, China
Abstract  Bound states can be supported on the surface of a periodically corrugated perfect conductor known as spoof surface plasmon polaritons with their dispersion curves reside below the light line. Here we show that bound states in the continuum (BICs) can also be achieved in such systems. Two types of grating structures are proposed to suppress the radiation leakage and hence generate bound states. The first one is a simple grating with broad grooves in which multiple cavity modes are accommodated. Due to the symmetry incompatibility and the destructive interaction mainly from the TM0 and TM1 modes, BICs at the Γ point and at off-Γ points are both realized. The second one is a dimerized grating with two grooves in each unit cell. The destructive interaction between the modes in the two grooves can suppresses the radiation and BICs at the Γ point are observed. The Q factors of the whole bands can be further tuned by the dimerization strength effectively. This work may offer new opportunity for the applications of metallic grating in the low frequency bands.
Keywords:  bound states in the continuum      perfect conducting grating      mode expansion method      spoof surface plasmon polaritons  
Received:  05 February 2021      Revised:  12 March 2021      Accepted manuscript online:  16 March 2021
PACS:  42.25.Fx (Diffraction and scattering)  
  42.25.Hz (Interference)  
  42.79.Dj (Gratings)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074049) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2020CDJQY-Z006 and 2019CDXZWL002).
Corresponding Authors:  Hong Xiang, Dezhuan Han     E-mail:;

Cite this article: 

Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专) Bound states in the continuum on perfect conducting reflection gratings 2021 Chin. Phys. B 30 084211

[1] Melikyan A, Alloatti L and Muslija A 2014 Nat. Photon. 8 229
[2] Liu N, Tang M L, Hentschel M, Giessen H and Alivisatos A P 2011 Nat. Mater. 10 631
[3] Noda S 2010 JOSA B 27 B1
[4] Corcoran B, Monat C and Grillet C 2009 Nat. Photon. 3 206
[5] Von Neumann J and Wigner E 1929 Phys. Z 30 465
[6] Friedrich H and Wintgen D 1985 Phys. Rev. A 32 3231
[7] Bulgakov E and Sadreev A 2011 Phys. Rev. B 83 235321
[8] Zhang J M, Braak D and Kollar M 2012 Phys. Rev. Lett. 109 116405
[9] Molina M I, Miroshnichenko A E and Kivshar Y S 2012 Phys. Rev. Lett. 108 070401
[10] Linton C M and McIver P 2007 Wave Motion 45 16
[11] Marinica D C, Borisov A G and Shabanov S V 2008 Phys. Rev. Lett. 100 183902
[12] Bulgakov E N and Sadreev A F 2008 Phys. Rev. B 78 075105
[13] Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A and Segev M 2011 Phys. Rev. Lett. 107 183901
[14] Hsu C W, Zhen B, Stone A D, Joannopoulos J D and Soljačić M 2016 Nat. Rev. Mater. 1 16048
[15] He Y, Guo G, Feng T, Xu Y and Miroshnichenko A E 2018 Phys. Rev. B 98 161112
[16] Chen G Y, Zhang W X and Zhang X D 2019 Opt. Express 27 16449
[17] Yang Y, Peng C, Liang Y, Li Z and Noda S 2014 Phys. Rev. Lett. 113 037401
[18] Zhen B, Hsu C W, Lu L, Stone A D and Soljačić M 2014 Phys. Rev. Lett. 113 257401
[19] Bulgakov E N and Maksimov D N 2017 Phys. Rev. Lett. 118 267401
[20] Song Q J, Zhao M X, Liu L, Chai J W, He G H, Xiang H, Han D Z and Zi J 2019 Phys. Rev. A 100 023810
[21] Dai S W, Liu L, Han D Z and Zi J 2018 Phys. Rev. B 98 081405
[22] Song Q J, Hu J S, Dai S W, Zheng C X, Han D Z, Zi J, Zhang Z Q and Chan C T 2020 Sci. Adv. 6 eabc1160
[23] Chen W, Chen Y and Liu W 2019 Phys. Rev. Lett. 122 153907
[24] Sadrieva Z, Frizyuk K, Petrov M, Kivshar Y and Bogdanov A 2019 Phys. Rev. B 100 115303
[25] Foley J M, Young S M and Phillips J D. 2014 Phys. Rev. B 89 165111
[26] Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y and Kanté B 2017 Nature 541 196
[27] Liu Y, Zhou W and Sun Y 2017 Sensors 17 1861
[28] Bulgakov E N and Sadreev A F 2014 Opt. Lett. 39 5212
[29] Bulgakov E N and Sadreev A F 2017 Phys. Rev. A 96 013841
[30] Koshelev K, Sychev S, Sadrieva Z, Bogdanov A and Iorsh I 2018 Phys. Rev. B 98 161113
[31] Zhang W, Charous A, Nagai M, Mittleman D M and Mendis R 2018 Optics express 26 13195
[32] Pendry J B, Martín-Moreno L and García-Vidal F J 2004 Science 305 847
[33] Hibbins A P, Evans B R and Sambles J R 2005 Science 308 670
[34] Williams C R, Andrews S R, Maier S A, Fernández-Domínguez A I, Martín-Moreno L and García-Vidal F J 2008 Nat. Photon. 2 175
[35] Shen X P, Cui T J, Martin-Cano D and Garcia-Vidal F J 2013 Proc. Natl. Acad. Sci. USA 110 40
[36] Yao H Z and Zhong S C 2014 Opt. Express 22 25149
[37] Kim S H, Kim T T, Oh S S, Kim J E, Park H Y and Kee C S 2011 Phys. Rev. B 83 165109
[38] Maier S A, Andrews S R, Martín-Moreno L and García-Vidal F J 2006 Phys. Rev. Lett. 97 176805
[39] Maradudin A A, Simonsen I, Polanco J and Fitzgerald R M 2016 J. Opt. 18 024004
[1] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[2] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[3] Negative-index dispersion and accidental mode degeneracy inan asymmetric spoof–insulator–spoof waveguide
Li-li Tian(田莉莉), Jian-long Liu(刘建龙), Ke-ya Zhou(周可雅), Yang Gao(高扬), Shu-tian Liu(刘树田). Chin. Phys. B, 2017, 26(7): 078401.
[4] Spoof surface plasmon-based bandpass filter with extremely wide upper stopband
Xiaoyong Liu(刘小勇), Lei Zhu(祝雷), Yijun Feng(冯一军). Chin. Phys. B, 2016, 25(3): 034101.
[5] Pure spin polarized transport based on Rashba spin–orbit interaction through the Aharonov–Bohm interferometer embodied four-quantum-dot ring
Wu Li-Jun, Han Yu. Chin. Phys. B, 2013, 22(4): 047302.
[3] Luo Zheng-Ming, Gou Cheng-Jun, Wolfram Laub. The penetration, diffusion and energy deposition of high-energy photon[J]. Chin. Phys., 2003, 12(7): 803 -808 .
[4] Wu Jian-Rong, Song Shi-Ji. Filtering for linear systems with noise correlation and its application to singular systems[J]. Chin. Phys., 2004, 13(12): 1977 -1981 .
[5] Zhou Hai-Feng, Yang Jian-Yi, Wang Ming-Hua, Jiang Xiao-Qing. Steering light into logic patterns with two-dimensional cascaded multimode waveguide[J]. Chin. Phys., 2007, 16(3): 740 -745 .
[6] Cao Shuai, Fang Mao-Fa, Zheng Xiao-Juan. The effect of quantum noise on multiplayer quantum game[J]. Chin. Phys., 2007, 16(4): 915 -918 .
[7] Sun Xian-Ping, Zeng Xi-Zhi, Zhan Ming-Sheng, Luo Jun. Optical pumping and population transfer of nuclear-spin states of caesium atoms in high magnetic fields[J]. Chin. Phys., 2007, 16(4): 998 -1007 .
[8] Cao Zhuo-Liang, Li Da-Chuang. Scheme for teleportation of an unknown atomic state via a cluster state in cavity QED[J]. Chin. Phys. B, 2008, 17(1): 55 -59 .
[9] Liao Xiang-Ping, Fang Mao-Fa, Cai Jian-Wu, Zheng Xiao-Juan. The entanglement of two dipole--dipole coupled atoms interacting with a thermal field via a two-photon process[J]. Chin. Phys. B, 2008, 17(6): 2137 -2142 .
[10] Kong Cui-Cui, Chen Shi-Hua. Synchronization of noise-perturbed generalized Lorenz system by sliding mode control[J]. Chin. Phys. B, 2009, 18(1): 91 -97 .