Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067101    DOI: 10.1088/1674-1056/abeee1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anisotropic thermoelectric transport properties in polycrystalline SnSe2

Caiyun Li(李彩云), Wenke He(何文科), Dongyang Wang(王东洋), and Li-Dong Zhao(赵立东)
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract  It is reported that SnSe2 consisting of the same elements as SnSe, is a new promising thermoelectric material with advantageous layered structure. In this work, the thermoelectric performance of polycrystalline SnSe2 is improved through introducing SnSe phase and electron doping (Cl doped in Se sites). The anisotropic transport properties of SnSe2 are investigated. A great reduction of the thermal conductivity is achieved in SnSe2 through introducing SnSe phase, which mainly results from the strong SnSe2-SnSe inter-phase scattering. Then the carrier concentration is optimized via Cl doping, leading to a great enhancement of the electrical transport properties, thus an extraordinary power factor of ~5.12 μW·cm-1·K-2 is achieved along the direction parallel to the spark plasma sintering (SPS) pressure direction (||P). Through the comprehensive consideration on the anisotropic thermoelectric transport properties, an enhanced figure of merit ZT is attained and reaches to ~0.6 at 773 K in SnSe2-2% SnSe after 5% Cl doping along the||P direction, which is much higher than ~0.13 and ~0.09 obtained in SnSe2-2% SnSe and pristine SnSe2 samples, respectively.
Keywords:  thermoelectric      SnSe2      anisotropic structure      Cl-doping  
Received:  02 March 2021      Revised:  12 March 2021      Accepted manuscript online:  16 March 2021
PACS:  71.15.-m (Methods of electronic structure calculations)  
  72.15.Cz (Electrical and thermal conduction in amorphous and liquid metals and Alloys ?)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  72.80.Rj (Fullerenes and related materials)  
Fund: Project supported by the Beijing Natural Science Foundation, China (Grant No. JQ18004), the National Key Research and Development Program of China (Grant Nos. 2018YFA0702100 and 2018YFB0703600), the National Natural Science Foundation of China (Grant No. 51772012), Shenzhen Peacock Plan Team (Grant No. KQTD2016022619565991), and 111 Project (Grant No. B17002). This work was also supported by the National Postdoctoral Program for Innovative Talents, China (Grant No. BX20200028) and the high performance computing (HPC) resources at Beihang University. L.D.Z. thanks for the support from the National Science Fund for Distinguished Young Scholars (Grant No. 51925101).
Corresponding Authors:  Li-Dong Zhao     E-mail:  zhaolidong@buaa.edu.cn

Cite this article: 

Caiyun Li(李彩云), Wenke He(何文科), Dongyang Wang(王东洋), and Li-Dong Zhao(赵立东) Anisotropic thermoelectric transport properties in polycrystalline SnSe2 2021 Chin. Phys. B 30 067101

[1] Zhao L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci. 7 251
[2] Zhang X and Zhao L D 2015 Journal of Materiomics 1 92
[3] Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
[4] Wang Y N, Chen S P, Fan W H, Guo J Y, Wu Y C and Wang W X 2020 Acta Phys. Sin. 69 246801 (in Chinese)
[5] Zheng L X, Hu J F and Luo J 2020 Acta Phys. Sin. 69 247102 (in Chinese)
[6] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C and Kanatzidis M G 2004 Science 303 818
[7] Sfeir M Y, Beetz T, Wang F, et al. 2008 Science 312 554
[8] Pei Y, Shi X, Lalonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66
[9] Pei Y, Wang H and Snyder G J 2012 Adv Mater 24 6125
[10] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N and Kanatzidis M G 2012 Nature 489 414
[11] Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z and Pei Y 2017 Adv. Mater. 29 17
[12] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C and Kanatzidis M G 2014 Nature 508 373
[13] Zhao L D, Tan G, Hao S Q, He J Q, Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C andKanatzidis M G 2015 Science 351 141
[14] Chang C, Wu M, He D, et al. 2018 Science 360 778
[15] Wu D, Pei Y, Wang Z, Wu H, Huang L, Zhao L D and He J 2014 Advanced Functional Materials 48 7763
[16] Xiao Y and Zhao L D 2018 npj Quantum Materials 3 1
[17] Xiao Y, Wang D, Zhang Y, Chen C, Zhang S, Wang K and Zhao L D 2020 J. Am. Chem. Soc. 142 4051
[18] Liu C, Huang Z, Wang D, Wang X, Miao L, Wang X and Zhao L D 2019 Journal of Materials Chemistry A 7 9761
[19] Huang Y, Zhou D, Chen X, Liu H, Wang C and Wang S 2016 Chemphyschem 17 375
[20] Fu Li Z Z, Li Y W, Wang W T, Li J F, Li B, Zhoang A H, Luo J T and Fan P 2017 Journal of Materials Science 52 10506
[21] Li J, Jia F, Zhang S, Zheng S, Wang B, Chen L and Wu L 2019 Journal of Materials Chemistry A 7 19316
[22] Chen Z, Ge B, Li W, Lin S, Shen J, Chang Y and Pei Y 2017 Nat. Commun. 8 13828
[23] Qu W W, Zhang X X, Yuan B F and Zhao L D 2017 Rare Metals 37 79
[24] Qin B, Wang D, He W, Zhang Y, Wu H, Pennycook S J and Zhao L D 2019 J. Am. Chem. Soc. 141 1141
[25] Chang C and Zhao L D 2018 Materials Today Physics 4 50
[26] Wang D, Huang Z, Zhang Y, Hao L, Wang G, Deng S and Zhao L D 2020 Science China Materials 63 1759
[27] Pei Y, Chang C, Wang Z, Yin M, Wu M, Tan G and Zhao L D 2016 J. Am. Chem. Soc. 138 16364
[28] Yu P, Yu X, Lu W, Lin H, Sun L, Du K and Liu Z 2016 Advanced Functional Materials 26 137
[29] Sun B Z, Ma Z, He C and Wu K 2015 Phys. Chem. Chem. Phys. 17 29844
[30] Ding Y, Xiao B, Tang G and Hong J 2016 The Journal of Physical Chemistry C 121 225
[31] Saha S, Banik A and Biswas K 2016 Phys. Chem. Chem. Phys. 17 15634
[32] Zhou Y and Zhao L D 2017 Adv. Mater. 29 1702676
[33] Wu Y, Li W, Faghaninia A, Chen Z, Li J, Zhang X and Pei Y 2017 Materials Today Physics 3 127
[34] Zhou W X and Chen K Q 2015 Sci. Rep. 5 15070
[35] Luo Y, Zheng Y, Luo Z, Hao S, Du C, Liang Q and Kanatzidis M G 2018 Advanced Energy Materials 8 1702167
[36] Shu Y, Su X, Xie H, Zheng G, Liu W, Yan Y and Tang X 2018 ACS Appl. Mater. Interfaces 10 15793
[37] Wu S, Liu C, Wu Z, Miao L, Gao J, Hu X and Zhou X 2019 Ceramics International 45 82
[38] Qin B, Zhang Y, Wang D, Zhao Q, Gu B, Wu H and Zhao L D 2020 J. Am. Chem. Soc. 142 5901
[39] Zhang X, Wang D, Wu H, Yin M, Pei Y, Gong S and Zhao L D 2017 Energy & Environmental Science 10 2420
[40] Zhao L D, He J, Wu C I, Hogan T P, Zhou X, Uher C, Kanatzidis M G 2012 J. Am. Chem. Soc. 134 7902
[41] Qin B C X, Zhou Y, Ming Y and Dong Z L 2018 Rare Metals 37 343
[42] Pei Y, Gibbs Z M, Gloskovskii A, Balke B, Zeier W G and Snyder G J 2014 Adv. Energy. Mater. 4 1400486
[43] He W K, Qin B C and Zhao L D 2020 Chin. Phys. Lett. 37 087104
[44] Cutler M, Leavy J F and Fitzpatrick R L 1964 Phys. Rev. 133 A1143
[45] Toberer G S E 2008 Nat. Mater. 7 105
[46] Xiao Y, Chang C, Pei Y, Wu D, Peng K, Zhou X and Zhao L D 2016 Phys. Rev. B 94 125203
[47] Xiao Y, Wu H, Cui J, Wang D, Fu L, Zhang Y and Zhao L D 2018 Energy Environ. Sci. 11 2486
[48] Schrade M, Berland K, Eliassen S N H, Guzik M N, Echevarria-Bonet C, Sorby M H and Finstad T G 2017 Sci. Rep. 7 13760
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[3] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[4] Influence of spherical inclusions on effective thermoelectric properties of thermoelectric composite materials
Wen-Kai Yan(闫文凯), Ai-Bing Zhang(张爱兵), Li-Jun Yi(易利军), Bao-Lin Wang(王保林), Ji Wang(王骥). Chin. Phys. B, 2020, 29(5): 057301.
[5] Energy cooperation in quantum thermoelectric systems withmultiple electric currents
Yefeng Liu(刘叶锋), Jincheng Lu(陆金成), Rongqian Wang(王荣倩), Chen Wang(王晨), Jian-Hua Jiang(蒋建华). Chin. Phys. B, 2020, 29(4): 040504.
[6] Thermal stability and thermoelectric properties of Cd-doped nano-layered Cu2Se prepared using NaCl flux method
Jianhua Lu(陆建华), Decong Li(李德聪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Jiali Chen(陈家莉), Wen Ge(葛文), and Shukang Deng(邓书康). Chin. Phys. B, 2020, 29(12): 127403.
[7] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[8] Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2020, 29(11): 118401.
[9] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[10] Grain size and structure distortion characterization of α-MgAgSb thermoelectric material by powder diffraction
Xiyang Li(李西阳), Zhigang Zhang(张志刚), Lunhua He(何伦华), Maxim Avdeev, Yang Ren(任洋), Huaizhou Zhao(赵怀周), and Fangwei Wang(王芳卫)†. Chin. Phys. B, 2020, 29(10): 106101.
[11] Topology of triple-point metals
Georg W. Winkler, Sobhit Singh, Alexey A. Soluyanov. Chin. Phys. B, 2019, 28(7): 077303.
[12] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[13] Synthesis, physical properties, and annealing investigation of new layered Bi-chalcogenide LaOBiHgS3
Yi Yu(于一), Chunchang Wang(汪春昌), Liang Li(李亮), Qiuju Li(李秋菊), Chao Cheng(程超), Shuting Wang(王舒婷), Changjin Zhang(张昌锦). Chin. Phys. B, 2019, 28(1): 017401.
[14] The magneto-thermoelectric effect of graphene with intra-valley scattering
Wenye Duan(段文晔), Junfeng Liu(刘军丰), Chao Zhang(张潮), Zhongshui Ma(马中水). Chin. Phys. B, 2018, 27(9): 097204.
[15] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
No Suggested Reading articles found!