Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056802    DOI: 10.1088/1674-1056/abeede

NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface

Huan Yang(杨欢)1, Yun Cao(曹云)1, Yixuan Gao(高艺璇)1, Yubin Fu(付钰彬)2, Li Huang(黄立)1,†, Junzhi Liu(刘俊治)2,3, Xinliang Feng(冯新亮)2,‡, Shixuan Du(杜世萱)1,4,§, and Hong-Jun Gao(高鸿钧)1,4
1 Institute of Physics and University of Chinese Academy of Sciences, Beijing 100190, China;
2 Center for Advancing Electronics Dresden(cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany;
3 Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China;
4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  Nanographenes (NGs) can be embedded with predesigned dopants or nonhexagonal rings to tailor the electronic properties and provide ideal platforms to study the unique physical and chemical properties. Here, we report the on-surface synthesis of NBN-doped NG embedded with five- and seven-membered rings (NBN-575-NG) on Au(111) from a oligophenylene precursor preinstalled with a NBN unit and a heptagonal ring. Scanning tunneling microscopy and non-contact atomic force microscopy images elucidate the intramolecular cyclodehydrogenation and the existence of the five- and seven-membered rings. Scanning tunneling spectroscopy spectra reveal that the NBN-575-NG is a semiconductor, which agrees with the density functional theory calculation results on a freestanding NBN-575-NG with the same structure. This work provides a feasible approach for the on-surface synthesis of novel NGs containing non-hexagonal rings.
Keywords:  on-surface synthesis      nanographene      nonhexagonal rings      scanning tunneling microscopy      density functional theory  
Received:  01 March 2021      Revised:  13 March 2021      Accepted manuscript online:  16 March 2021
PACS:  73.22.Pr (Electronic structure of graphene)  
  68.37.Ps (Atomic force microscopy (AFM))  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51761135130 and 61888102), the National Key R&D Program of China (Grant Nos. 2018YFA0305800 and 2019YFA0308500), DFG EnhanceNano (Grant No. 391979941), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), the International Partnership Program of Chinese Academy of Sciences (Grant NO. 112111KYSB20160061), and the K. C. Wong Education Foundation. Part of the research was performed in the Key Laboratory of Vacuum Physics, Chinese Academy of Sciences. Computational resources were provided by the National Supercomputing Center in Tianjin Municipality, China.
Corresponding Authors:  Li Huang, Xinliang Feng, Shixuan Du     E-mail:;;

Cite this article: 

Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧) NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface 2021 Chin. Phys. B 30 056802

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl Acad. Sci. USA 102 10451
[3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4] Duan R H, Deng Y, Yang J F and Liu Z 2021 Chin. J. Vaccu. Sci. Tec. 41 1
[5] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
[6] Ma R S, Huan Q, Wu L M, Yan J H, Zhang Y Y, Bao L H, Liu Y Q, Du S X and Gao H J 2017 Chin. Phys. B 26 066801
[7] Guo H, Chen H, Que Y, Zheng Q, Zhang Y Y, Bao L H, Huang L, Wang Y L, Du S X and Gao H J 2019 Chin. Phys. B 28 056107
[8] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[9] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2015 Nat. Phys. 12 139
[10] Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X and Zhang G Y 2018 Acta Phys. Sin. 67 128103 (in Chinese)
[11] Zhang T T, Cheng M, Yang R and Zhang G Y 2017 Acta Phys. Sin. 66 216103
[12] Chu Y, Liu L, Yuan Y, Shen C, Yang R, Shi D, Yang W and Zhang G 2020 Chin. Phys. B 29 128104
[13] Huang L, Li G, Zhang Y Y, Bao L H, Huan Q, Lin X, Wang Y L, Guo H M, Shen C M, Du S X and Gao H J 2018 Acta Phys. Sin. 67 126801 (in Chinese)
[14] Kastler M, Schmidt J, Pisula W, Sebastiani D and Müllen K 2006 J. Am. Chem. Soc. 128 9526
[15] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[16] Treier M, Pignedoli C A, Laino T, Rieger R, Mullen K, Passerone D and Fasel R 2011 Nat. Chem. 3 61
[17] Chen L, Hernandez Y, Feng X and Mullen K 2012 Angew. Chem. Int. Ed. 51 7640
[18] Lv R and Terrones M 2012 Mater. Lett. 78 209
[19] Wang X Y, Narita A, Zhang W, Feng X and Mullen K 2016 J. Am. Chem. Soc. 138 9021
[20] Mishra S, Beyer D, Berger R, Liu J, Groning O, Urgel J I, Mullen K, Ruffieux P, Feng X and Fasel R 2020 J. Am. Chem. Soc. 142 1147
[21] Zheng Y, Li C, Zhao Y, Beyer D, Wang G, Xu C, Yue X, Chen Y, Guan D D, Li Y Y, Zheng H, Liu C, Luo W, Feng X, Wang S and Jia J 2020 Phys. Rev. Lett. 124 147206
[22] Li J, Sanz S, Corso M, Choi D J, Pena D, Frederiksen T and Pascual J I 2019 Nat. Commun. 10 200
[23] Cai J, Pignedoli C A, Talirz L, Ruffieux P, Sode H, Liang L, Meunier V, Berger R, Li R, Feng X, Mullen K and Fasel R 2014 Nat. Nanotechnol. 9 896
[24] Zhang Y, Zhang Y, Li G, Lu J, Lin X, Du S, Berger R, Feng X, Müllen K and Gao H J 2014 Appl. Phys. Lett. 105 023101
[25] Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P and Meyer E 2015 Nat. Commun. 6 8098
[26] Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J and Liljeroth P 2015 Nat. Commun. 6 10177
[27] Liu J, Li B W, Tan Y Z, Giannakopoulos A, Sanchez-Sanchez C, Beljonne D, Ruffieux P, Fasel R, Feng X and Mullen K 2015 J. Am. Chem. Soc. 137 6097
[28] Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26
[29] Liu Y, Wang G, Huang Q, Guo L and Chen X 2012 Phys. Rev. Lett. 108 225505
[30] Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X and Zhong D 2017 Nat. Commun. 8 14924
[31] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K and Fasel R 2010 Nature 466 470
[32] Ruffieux P, Wang S, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mullen K and Fasel R 2016 Nature 531 489
[33] Rogers C, Chen C, Pedramrazi Z, Omrani A A, Tsai H Z, Jung H S, Lin S, Crommie M F and Fischer F R 2015 Angew. Chem., Int. Ed. 54 15143
[34] Xu K, Urgel J I, Eimre K, Di Giovannantonio M, Keerthi A, Komber H, Wang S, Narita A, Berger R, Ruffieux P, Pignedoli C A, Liu J, Mullen K, Fasel R and Feng X 2019 J. Am. Chem. Soc. 141 7726
[35] Fu Y, Yang H, Gao Y, Huang L, Berger R, Liu J, Lu H, Cheng Z, Du S, Gao H J and Feng X 2020 Angew. Chem., Int. Ed. 59 8873
[36] Pavlicek N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D J and Gross L 2017 Nat. Nanotechnol. 12 308
[37] Su J, Telychko M, Hu P, Macam G, Mutombo P, Zhang H, Bao Y, Cheng F, Huang Z Q, Qiu Z, Tan S J R, Lin H, Jelínek P, Chuang F C, Wu J and Lu J 2019 Sci. Adv. 5 eaav7717
[38] Wang X Y, Richter M, He Y, Bjork J, Riss A, Rajesh R, Garnica M, Hennersdorf F, Weigand J J, Narita A, Berger R, Feng X, Auwarter W, Barth J V, Palma C A and Mullen K 2017 Nat. Commun. 8 1948
[39] Fu Y, Zhang K, Dmitrieva E, Liu F, Ma J, Weigand J J, Popov A A, Berger R, Pisula W, Liu J and Feng X 2019 Org. Lett. 21 1354
[40] Bartels L, Meyer G and Rieder K H 1997 Appl. Phys. Lett. 71 213
[41] Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science 325 1110
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[44] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[1] Two different emission enhancement of trans-stilbene crystal under high pressure: Different evolution of structure
Yarong Gu(古雅荣), Guicheng Shao(邵贵成), Zhumei Tian(田竹梅), Haixia Li(李海霞), Kai Wang(王凯), and Bo Zou(邹勃). Chin. Phys. B, 2022, 31(1): 017901.
[2] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[3] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[4] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[5] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[6] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[7] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[8] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[9] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[10] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[11] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[12] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[13] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[14] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[15] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
No Suggested Reading articles found!