Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056802    DOI: 10.1088/1674-1056/abeede

NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface

Huan Yang(杨欢)1, Yun Cao(曹云)1, Yixuan Gao(高艺璇)1, Yubin Fu(付钰彬)2, Li Huang(黄立)1,†, Junzhi Liu(刘俊治)2,3, Xinliang Feng(冯新亮)2,‡, Shixuan Du(杜世萱)1,4,§, and Hong-Jun Gao(高鸿钧)1,4
1 Institute of Physics and University of Chinese Academy of Sciences, Beijing 100190, China;
2 Center for Advancing Electronics Dresden(cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany;
3 Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China;
4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  Nanographenes (NGs) can be embedded with predesigned dopants or nonhexagonal rings to tailor the electronic properties and provide ideal platforms to study the unique physical and chemical properties. Here, we report the on-surface synthesis of NBN-doped NG embedded with five- and seven-membered rings (NBN-575-NG) on Au(111) from a oligophenylene precursor preinstalled with a NBN unit and a heptagonal ring. Scanning tunneling microscopy and non-contact atomic force microscopy images elucidate the intramolecular cyclodehydrogenation and the existence of the five- and seven-membered rings. Scanning tunneling spectroscopy spectra reveal that the NBN-575-NG is a semiconductor, which agrees with the density functional theory calculation results on a freestanding NBN-575-NG with the same structure. This work provides a feasible approach for the on-surface synthesis of novel NGs containing non-hexagonal rings.
Keywords:  on-surface synthesis      nanographene      nonhexagonal rings      scanning tunneling microscopy      density functional theory  
Received:  01 March 2021      Revised:  13 March 2021      Accepted manuscript online:  16 March 2021
PACS:  73.22.Pr (Electronic structure of graphene)  
  68.37.Ps (Atomic force microscopy (AFM))  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51761135130 and 61888102), the National Key R&D Program of China (Grant Nos. 2018YFA0305800 and 2019YFA0308500), DFG EnhanceNano (Grant No. 391979941), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), the International Partnership Program of Chinese Academy of Sciences (Grant NO. 112111KYSB20160061), and the K. C. Wong Education Foundation. Part of the research was performed in the Key Laboratory of Vacuum Physics, Chinese Academy of Sciences. Computational resources were provided by the National Supercomputing Center in Tianjin Municipality, China.
Corresponding Authors:  Li Huang, Xinliang Feng, Shixuan Du     E-mail:;;

Cite this article: 

Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧) NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface 2021 Chin. Phys. B 30 056802

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl Acad. Sci. USA 102 10451
[3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4] Duan R H, Deng Y, Yang J F and Liu Z 2021 Chin. J. Vaccu. Sci. Tec. 41 1
[5] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
[6] Ma R S, Huan Q, Wu L M, Yan J H, Zhang Y Y, Bao L H, Liu Y Q, Du S X and Gao H J 2017 Chin. Phys. B 26 066801
[7] Guo H, Chen H, Que Y, Zheng Q, Zhang Y Y, Bao L H, Huang L, Wang Y L, Du S X and Gao H J 2019 Chin. Phys. B 28 056107
[8] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[9] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2015 Nat. Phys. 12 139
[10] Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X and Zhang G Y 2018 Acta Phys. Sin. 67 128103 (in Chinese)
[11] Zhang T T, Cheng M, Yang R and Zhang G Y 2017 Acta Phys. Sin. 66 216103
[12] Chu Y, Liu L, Yuan Y, Shen C, Yang R, Shi D, Yang W and Zhang G 2020 Chin. Phys. B 29 128104
[13] Huang L, Li G, Zhang Y Y, Bao L H, Huan Q, Lin X, Wang Y L, Guo H M, Shen C M, Du S X and Gao H J 2018 Acta Phys. Sin. 67 126801 (in Chinese)
[14] Kastler M, Schmidt J, Pisula W, Sebastiani D and Müllen K 2006 J. Am. Chem. Soc. 128 9526
[15] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[16] Treier M, Pignedoli C A, Laino T, Rieger R, Mullen K, Passerone D and Fasel R 2011 Nat. Chem. 3 61
[17] Chen L, Hernandez Y, Feng X and Mullen K 2012 Angew. Chem. Int. Ed. 51 7640
[18] Lv R and Terrones M 2012 Mater. Lett. 78 209
[19] Wang X Y, Narita A, Zhang W, Feng X and Mullen K 2016 J. Am. Chem. Soc. 138 9021
[20] Mishra S, Beyer D, Berger R, Liu J, Groning O, Urgel J I, Mullen K, Ruffieux P, Feng X and Fasel R 2020 J. Am. Chem. Soc. 142 1147
[21] Zheng Y, Li C, Zhao Y, Beyer D, Wang G, Xu C, Yue X, Chen Y, Guan D D, Li Y Y, Zheng H, Liu C, Luo W, Feng X, Wang S and Jia J 2020 Phys. Rev. Lett. 124 147206
[22] Li J, Sanz S, Corso M, Choi D J, Pena D, Frederiksen T and Pascual J I 2019 Nat. Commun. 10 200
[23] Cai J, Pignedoli C A, Talirz L, Ruffieux P, Sode H, Liang L, Meunier V, Berger R, Li R, Feng X, Mullen K and Fasel R 2014 Nat. Nanotechnol. 9 896
[24] Zhang Y, Zhang Y, Li G, Lu J, Lin X, Du S, Berger R, Feng X, Müllen K and Gao H J 2014 Appl. Phys. Lett. 105 023101
[25] Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P and Meyer E 2015 Nat. Commun. 6 8098
[26] Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J and Liljeroth P 2015 Nat. Commun. 6 10177
[27] Liu J, Li B W, Tan Y Z, Giannakopoulos A, Sanchez-Sanchez C, Beljonne D, Ruffieux P, Fasel R, Feng X and Mullen K 2015 J. Am. Chem. Soc. 137 6097
[28] Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26
[29] Liu Y, Wang G, Huang Q, Guo L and Chen X 2012 Phys. Rev. Lett. 108 225505
[30] Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X and Zhong D 2017 Nat. Commun. 8 14924
[31] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K and Fasel R 2010 Nature 466 470
[32] Ruffieux P, Wang S, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mullen K and Fasel R 2016 Nature 531 489
[33] Rogers C, Chen C, Pedramrazi Z, Omrani A A, Tsai H Z, Jung H S, Lin S, Crommie M F and Fischer F R 2015 Angew. Chem., Int. Ed. 54 15143
[34] Xu K, Urgel J I, Eimre K, Di Giovannantonio M, Keerthi A, Komber H, Wang S, Narita A, Berger R, Ruffieux P, Pignedoli C A, Liu J, Mullen K, Fasel R and Feng X 2019 J. Am. Chem. Soc. 141 7726
[35] Fu Y, Yang H, Gao Y, Huang L, Berger R, Liu J, Lu H, Cheng Z, Du S, Gao H J and Feng X 2020 Angew. Chem., Int. Ed. 59 8873
[36] Pavlicek N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D J and Gross L 2017 Nat. Nanotechnol. 12 308
[37] Su J, Telychko M, Hu P, Macam G, Mutombo P, Zhang H, Bao Y, Cheng F, Huang Z Q, Qiu Z, Tan S J R, Lin H, Jelínek P, Chuang F C, Wu J and Lu J 2019 Sci. Adv. 5 eaav7717
[38] Wang X Y, Richter M, He Y, Bjork J, Riss A, Rajesh R, Garnica M, Hennersdorf F, Weigand J J, Narita A, Berger R, Feng X, Auwarter W, Barth J V, Palma C A and Mullen K 2017 Nat. Commun. 8 1948
[39] Fu Y, Zhang K, Dmitrieva E, Liu F, Ma J, Weigand J J, Popov A A, Berger R, Pisula W, Liu J and Feng X 2019 Org. Lett. 21 1354
[40] Bartels L, Meyer G and Rieder K H 1997 Appl. Phys. Lett. 71 213
[41] Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science 325 1110
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[44] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[1] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[2] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[3] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[4] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[5] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[6] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[7] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[8] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[9] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[10] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[11] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[12] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[13] Two different emission enhancement of trans-stilbene crystal under high pressure: Different evolution of structure
Yarong Gu(古雅荣), Guicheng Shao(邵贵成), Zhumei Tian(田竹梅), Haixia Li(李海霞), Kai Wang(王凯), and Bo Zou(邹勃). Chin. Phys. B, 2022, 31(1): 017901.
[14] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[15] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[4] Yang Shu-Zheng, Lin Li-Bin. The quantum nonthermal effect of a nonstationary Kerr-Newman black hole and the average range of the effective particles[J]. Chin. Phys., 2002, 11(6): 619 -623 .
[5] Liu Xiang-Rong, Cao Chong-De, Wei Bing-Bo. Rapid eutectic growth in undercooled Al-Ge alloy under free fall condition[J]. Chin. Phys. B, 2003, 12(11): 1266 -1271 .
[6] Zhao Yan-Ting, Zhao Jian-Ming, Huang Tao, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation of the sub-Doppler transmission spectroscopy in a thin vapour layer at room temperature[J]. Chin. Phys. B, 2004, 13(9): 1414 -1417 .
[7] Fang Tong-Zhen, Jiang Nan, Wang Long. Calculation of ion energy distributions of argon excimer ions generated in helicon plasma[J]. Chin. Phys., 2005, 14(11): 2256 -2261 .
[8] Chen Li-Bing, Lu Hong, Liu Yu-Hua. Implementing remotely a single-qubit rotation operation by three-qubit entanglement[J]. Chin. Phys., 2005, 14(7): 1323 -1328 .
[9] Chen Yu(陈玉), Han An-Jia(韩安家), Ke Jian-Hong(柯见洪), and Lin Zhen-Quan(林振权). Aggregation processes with catalysis-driven monomer birth/death[J]. Chin. Phys., 2006, 15(8): 1896 -1902 .
[10] Li Cheng-Yue(李承跃), J. P. Allain, and Deng Bai-Quan(邓柏权). Effects of a liquid lithium curtain as the first wall in a fusion reactor plasma[J]. Chin. Phys., 2007, 16(11): 3312 -3318 .