Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 063401    DOI: 10.1088/1674-1056/abee6d

Production of dual species Bose-Einstein condensates of 39K and 87Rb

Cheng-Dong Mi(米成栋)1,2, Khan Sadiq Nawaz1,2, Peng-Jun Wang(王鹏军)1,2,†, Liang-Chao Chen(陈良超)1,2, Zeng-Ming Meng(孟增明)1,2, Lianghui Huang(黄良辉)1,2, and Jing Zhang(张靖)1,2,‡
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We report the production of 39K and 87Rb Bose-Einstein condensates (BECs) in the lowest hyperfine states|F=1,mF=1 angle simultaneously. We collect atoms in bright/dark magneto-optical traps (MOTs) of 39K/87Rb to overcome the light-assisted losses of 39K atoms. Gray molasses cooling on the D1 line of the 39K is used to effectively increase the phase density, which improves the loading efficiency of 39K into the quadrupole magnetic trap. Simultaneously, the normal molasses is employed for 87Rb. After the microwave evaporation cooling on 87Rb in the optically plugged magnetic trap, the atoms mixture is transferred to a crossed optical dipole trap, where the collisional properties of the two species in different combinations of the hyperfine states are studied. The dual species BECs of 39K and 87Rb are obtained by further evaporative cooling in an optical dipole trap at a magnetic field of 372.6 G with the background repulsive interspecies scattering length aKRb=34a0 (a0 is the Bohr radius) and the intraspecies scattering length aK=20.05a0.
Keywords:  atom cooling methods      ultracold collisions      ultracold gases      hyperfine interactions  
Received:  30 January 2021      Revised:  11 March 2021      Accepted manuscript online:  15 March 2021
PACS:  37.10.De (Atom cooling methods)  
  34.50.Cx (Elastic; ultracold collisions)  
  32.80.Wr (Other multiphoton processes)  
  67.85.-d (Ultracold gases, trapped gases)  
Fund: Project supported by the National Key R&D Program of China (Grants Nos. 2016YFA0301602 and 2018YFA0307601), the National Natural Science Foundation of China (Grant Nos. 11974224, 11704234, 11804203, 12034011, 12022406, 12004229, and 92065108), the Fund for Shanxi "1331 Project" Key Subjects Construction, and the Program of Youth Sanjin Scholar.
Corresponding Authors:  Peng-Jun Wang, Jing Zhang     E-mail:;,

Cite this article: 

Cheng-Dong Mi(米成栋), Khan Sadiq Nawaz, Peng-Jun Wang(王鹏军), Liang-Chao Chen(陈良超), Zeng-Ming Meng(孟增明), Lianghui Huang(黄良辉), and Jing Zhang(张靖) Production of dual species Bose-Einstein condensates of 39K and 87Rb 2021 Chin. Phys. B 30 063401

[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[2] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[3] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
[4] Wang P, Yu Z, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[5] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[6] Galitski V and Spielman I B 2013 Nature 494 49
[7] Wang D, Liu R, Zhu S and Scully M O 2015 Phys. Rev. Lett. 114 043602
[8] Chen L, Wang P, Meng Z, Huang L, Cai H, Wang D, Zhu S and Zhang J 2018 Phys. Rev. Lett. 120 193601
[9] Wang P, Chen L, Mi C, Meng Z, Huang L, Nawaz K S, Cai H, Wang D, Zhu S and Zhang J 2020 npj Quant. Inf. 6 18
[10] Liu Y, Hu M, Nichols M A, Grimes D D, Karman T, Guo H and Ni K 2020 Nat. Phys. 16 1132
[11] Nawaz K S, Chen L, Mi C, Chen L, Meng Z, Huang L, Wang P and Zhang J 2020 Phys. Rev. A 102 053326
[12] Grimm R 2019 Few-Body Syst. 51 113
[13] Tung S, Jiménez-García K, Johansen J, Parker C V and Chin C 2014 Phys. Rev. Lett. 113 240402
[14] Nawaz K S, Mi C, Chen L, Wang P and Zhang J 2019 Chin. Phys. Lett. 36 043201
[15] Bohn J L, Rey A M and Ye J 2017 Science 357 1002
[16] Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S and Ye J 2010 Science 327 853
[17] Park J W, Will S A and Zwierlein M W 2015 Phys. Rev. Lett. 114 205302
[18] Schirotzek A, Wu C, Sommer A and Zwierlein M W 2009 Phys. Rev. Lett. 102 230402
[19] Kohstall C, Zaccanti M, Jag M, Trenkwalder A, Massignan P, Bruun G M, Schreck F and Grimm R 2012 Nature 485 615
[20] Yan Z Z, Ni Y, Robens C and Zwierlein M W 2020 Science 368 190
[21] Ferrier-Barbut I, Delehaye M, Laurent S, Grier A T, Pierce M, Rem B S, Chevy F and Salomon C 2014 Science 345 1035
[22] Wang F, Li X, Xiong D and Wang D 2015 J. Phys. B: At. Mol. Opt. Phys. 49 015302
[23] Wacker L, Jorgensen N B, Birkmose D, Horchani R, Ertmer W, Klempt C, Winter N, Sherson J and Arlt J J 2015 Phys. Rev. A 92 053602
[24] Schulze T A, Hartmann T, Voges K K, Gempel M W, Tiemann E, Zenesini A and Ospelkaus S 2018 Phys. Rev. A 97 023623
[25] Modugno G, Modugno M, Riboli F, Roati G and Inguscio M 2002 Phys. Rev. Lett. 89 190404
[26] Thalhammer G, Barontini G, De Sarlo L, Catani J, Minardi F and Inguscio M 2008 Phys. Rev. Lett. 100 210402
[27] Pasquiou B, Bayerle A, Tzanova S M, Stellmer S, Szczepkowski J, Parigger M, Grimm R and Schreck F 2013 Phys. Rev. A 88 023601
[28] Trautmann A, Ilzhöfer P, Durastante G, Politi C, Sohmen M, Mark M J and Ferlaino F 2018 Phys. Rev. Lett. 121 213601
[29] Lercher A D, Takekoshi T, Debatin M, Schuster B, Rameshan R, Ferlaino F, Grimm R and Nägerl H C 2011 Eur. Phys. J. D 65 3
[30] McCarron D J, Cho H W, Jenkin D L, Köppinger M P and Cornish S L 2011 Phys. Rev. A 84 011603
[31] Simoni A, Zaccanti M, D'Errico C, Fattori M, Roati G, Inguscio M and Modugno G 2008 Phys. Rev. A 77 052705
[32] D'Errico C, Zaccanti M, Fattori M, Roati G, Inguscio M, Modugno G and Simoni A 2007 New J. Phys. 9 223
[33] Prevedelli M, Cataliotti F S, Cornell E A, Ensher J R, Fort C, Ricci L, Tino G M and Inguscio M 1999 Phys. Rev. A 59 886
[34] Marcassa L G, Telles G D, Muniz S R and Bagnato V S 2000 Phys. Rev. A 63 013413
[35] Ketterle W, Davis K B, Joffe M A, Martin A and Pritchard D 1993 Phys. Rev. Lett. 70 2253
[36] Nath D, Easwaran R K, Rajalakshmi G and Unnikrishnan C S 2013 Phys. Rev. A 88 053407
[37] Salomon G, Fouche L, Wang P, Aspect A, Bouyer P and Bourdel T 2013 Europhys. Lett. 104 63002
[38] Sievers F, Kretzschmar N, Fernandes D R, Suchet D, Rabinovic M, Wu S, Parker C V, Khaykovich L, Salomon C and Chevy F 2015 Phys. Rev. A 91 023426
[39] Shi Z, Li Z, Wang P, Meng Z, Huang L and Zhang J 2018 Chin. Phys. Lett. 35 123701
[40] Chen L, Meng Z and Wang P 2017 Acta Phys. Sin. 66 083701 (in Chinese)
[41] Yang G, Chen L, Mi C, Wang P and Zhang J 2018 Acta Sin. Quantum Opt. 24 156
[42] Wang H, Gould P L and Stwalley W C 1995 Phys. Rev. A 53 R1216
[43] Fan H, Wang P and Zhang J 2015 Acta Sin. Quantum Opt. 21 351
[44] Landini M, Roy S, Carcagní L, Trypogeorgos D, Fattori M, Inguscio M and Modugno G 2011 Phys. Rev. A 84 043432
[45] Campbell R L D, Smith R P, Tammuz N, Beattie S, Moulder S and Hadzibabic Z 2010 Phys. Rev. A 82 063611
[46] Wang P, Fu Z, Chai S and Zhang J 2011 Chin. Phys. B 20 103401
[47] Gerken M, Tran B, Häfner S, Tiemann E, Zhu B and Weidemüler M 2019 Phys. Rev. A 100 050701
[48] Zhang B, Li F, Deng S and Wu H 2019 Acta Sin. Quantum Opt. 25 413
[49] Wang J, Pan J, Cui X and Yi W 2020 Chin. Phys. Lett. 37 076701
[50] Yao R, Sun Z, Zhou S and Wang Y 2018 Chin. Phys. B 27 016703
[1] Collective modes of Weyl fermions with repulsive S-wave interaction
Xun-Gao Wang(王勋高), Huan-Yu Wang(王寰宇), Jiang-Min Zhang(张江敏), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(11): 117201.
No Suggested Reading articles found!